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PREFACE

The principal aim of this wmonograph is to present a coherent and fairly
comprehensive account of recent progress in the area of dynamics and stability
of mechanical systems with follower forces. By "recent," quite specifically,
is meant the period after 1963, the year of publication of the English trans-
lation of the first book (by V. V. Bolotin) devoted in its entirety to non-
conservative problems of the theory of elastic stability, i.e., problems with
follower forces.

The last decade has witnessed a considerable expansion of interest in
this problem area, but the progress has been reported piecemeal by a variety
of investigators in different countries and scattered in numerous journals.
Even though advances are being continually made, it still appears to be
justified to attempt to present an account of recent developments and to
place them into a relative perspective, In this attempt, the author's own
work and that of his collaborators has received, quite naturally, particular
emphasis,

It is hoped that the monograph may prove useful as a source of information
on the current state-of-the-art for the research worker and practicing engineer.
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CHAPTER 1

INTRODUCTION

1.1 Structural Stability: Column Buckling

The structural engineer and the applied mechanician are usually becoming
acquainted with the area of structural stability through Euler's problem of
elastic column buckling.

There are several different ways in which the problem of column buckling
can be presented to the beginner, but one of the most instructive ones is
through an eccentrically loaded cantilevered column (Fig. l.l) as was done
recently by Ziegler [1].*

It is assumed that the column is homogeneous, obeys linear elastic Hooke's
law (Young's modulus E) and is of constant cross-section. Let £ be the length
of the column, EI the flexural rigidity, e the eccentricity of the (compres-
sive) load P and f the deflection at the free end. The load P is assumed to
be of the "dead" type, i.e., a weight which does not change in magnitude and
direction as a possible consequence of the deformation of the column, If the
slope of the deflected column axis w(x) is assumed to be small as compared to
unity, the bending moment at section x 1s

M =P(e + £ ~ w) (1.1

On the other hand in elementary theory of beam bending the bending moment M
is known to be proportional to the curvature, i.e.,

M = EI w* (1.2)

Elimination of M in the above two relations leads to the differential equation
of the deflection curve

EI w” =P(e + £ - w) (1.3)
or
S T
wit g w B (e + £) (1.4)

- . i _
Numbers in brackets indicate references compiled in a listing beginning
on page 143.



The general solution of this equation can be written in the form, with the

abbreviation P/(EIL) = n?

w=Acos ux+Bsinux+e+ £ (1.5)

The unknown constants A, B and £ are to be determined from the boundary con-
ditions

w(0) =w/(0) =0 and w(g) = £ (1.6)
which leads to the solution

e

—__—COS ) (1- CO8 M x) (1-7)

and the end deflection

e (—1— 1) (1.8)

cos u 4

Hh
[

It is seen from this last expression that if

b1 nZEI
cos w £ =1 i.e. n = 22 ; P = Z—E— (1.9)
L

the deflections at the free end f become infinite, regardless how small the
eccentricity e. The column is said to buckle under the critical load
(buckling load)

2

P, = .U% (1.10)
4l

Due to the assumptions introduced, the above relations are obviously
valid only for small deflections. If a centrally loaded colummn is considered
and if the analysis is based on a more exact (nonlinear) differential equa-
tion of the deflection curve, which allows for large slopes of this curve,
the dependence of P on the end deflection f can be established, with the re-
sult illustrated in Fig. 1.2,

In the range of the load 0 <P <:P1 there is only one equilibrium posi-

tion possible, namely, that of the straight column (f = 0), This equilibrium
position is stable in the sense that small disturbances or imperfections of
various sorts are mot followed by large deviations from this position. 1In
the range P >Py, by contrast, the perfectly straight column (£ = 0) is still



in equilibrium, but this equilibrium is unstable since small disturbances will
cause the column to move away from this position (f # 0). The stable equilib-
rium positions in this range, P >-P1, are located on a symmetric curve which
branches from the straight line £ = 0 at the point P = Pl‘

It is thus seen that buckling of a column is associlated with the pheno-
menon of bifurcation of equilibrium paths, a concept intimately associated
with Euler's notion of stability amd instability.

This concept of Euler in amalyzing stability served technology well, par-
ticularly in the area of structural engineering and structural mechanics, as
applied to buckling of beams, frames, plates, etc., and various combinations
of structural elements, subjected to dead loads,

It was found, however, that this concept cannot be applied indiscrimi-
nately to the stability problem of any mechanical system. Specifically,
systems which are not subjected to dead loads but rather to forces due to an
interacting medium have often to be analyzed differently with regard to sta-
bility., Examples of such mechanical systems include airfoils placed in an
airstream, turbine blades interacting with water, flexible pipes conveying
fluid, elastic systems subjected to impinging fluid jets, as well as certain
types of electro-mechanical interactions.

A common feature of such mechanical systems, or rather of forces acting
on them, is that these forces are not derivable from a potential (by contrast
to dead loads) and as a result a stability analysis based on Euler's concept
of bifurcation of equilibrium may break down.

For such problems a more fundamental approach to problems of stability
has to be followed, one which is, for instance, based on the dynamic method
of investigating small motions induced as a result of perturbations of the
positions of equilibrium. One finds then that stability of a mechanical
system subjected to forces which are not derivable from a potential may, gen-
erally, be lost either through oscillations with increasing amplitude or
through a nonoscillatory motion away from the equilibrium position. Imn the
former case no bifurcation of equilibrium exists and therefore Euler's method
breaks down. In the latter case the dynamic method leads essentially to the
same results as Euler's static method of analyzing stability.

A significant property of forces which are not derivable from a potential
is their dependence on the instantaneous position or configuratiom of the sys-
tem upon which they are acting. That is these forces follow in some a priori
prescribed manner the motion of the system, For this reason they have been
termed not only nonconservative forces, but also circulatory forces, configu-
ration-dependent forces or simply follower forces.



1.2 Aim and Scope of the Monograph

The present monograph centers on problems of stability of equilibrium of
mechanical systems with follower forces. Follower forces, as acting on me-
chanical systems, may be of aerodynamic, hydrodynamic, electromagnetic or
thermal origin., Furthermore, they occur frequently in automatic control
systems,

The beginnings of analyses of stability of mechanical systems with fol-
lower forces go back to the late nineteen-twenties and are associated with the
name of Nikolai [2,3) in Russia. Comprehensive, fundamental studies were car-
ried out by Ziegler [4-7] in the fifties in Switzerland. The book by Bolotin
[8], devoted in its entirety to nonconservative problems of the theory of
elastic stability, presents a well-rounded state of knowledge as of a decade
ago.

Several areas of stability problems of mechanical systems with follower
forces, such as the highly developed area of aeroelasticity (cf. Garrick [9])
and stability of rotating shafts, will not be considered in the present mono-
graph since these areas have already received considerable attention.

The primary purpose of the present monograph is limited in the sense that
attention is confined to the developments of the last decade, i.e., after the
publication of [8], and narrowed down further by emphasizing the analytical and
experimental investigations in which the author and his coworkers were involved
during the period of the last seven years. A review of the work, including
numerous references, through the year 1966, is contained in reference [10].

Concepts of stability in mathematical terms, as well as criteria of sta-
bility are reviewed briefly in the still introductory Chapter II, together with
means of analytical specification of follower forces. Chapter III is devoted
to a discussion of nondissipative (i.e., purely elastic) systems with two
degrees of freedom, An illustrative example is considered first and a general
linear system next. A remarkable feature of systems with follower forces is
that even small damping forces and certain other velocity-dependent forces may
have a strong destabilizing effect. Such destabilizing effects, both in dis-
crete and continuous systems, are treated in detail in Chapter IV, The special
considerations which must be introduced in the analysis of continuous systems
are discussed in Chapter V. Mechanical systems with follower forces may re-
quire particular procedures in their stability analysis. Such methods, in-
cluding energy considerations, are dealt with in Chapter VI.

The analytical work on systems with follower forces is sometimes being
criticized as being purely mathematical and as having no relevance to actual
mechanical devices and structures, To counter this argument, several possibi-
lities of physical realization of mechanical systems with follower forces are
examined in Chapter VII, Qualitative observatlons on demonstrational labora-
tory models and quantitative experiments are reported in Chapter VIII,



CHAPTER II
CONCEPTS OF STABILITY AND FOLLOWER FORCES

The term "stability" assigns a quality to a state of a system which
signifies that possible disturbances of the system will not essentially change
the state. This qualitative description is necessarily vague and precise
mathematical meaning is to be assigned to the terms '‘state," "disturbances"
and "esgsential change."

The required mathematical apparatus has been supplied by Liapunov [11].
Let us consider a discrete system with r degrees of freedom described by r
generalized coordinates 4y and let us examine the special case of the state
of equilibrium

q = 0 (1 =1,2,...,1) 2.1)

If the system is disturbed at a time t = to, at any instant t its state will

be characterized by (generally nonvanishing) coordinates q; and by generalized
dq
velocities éi = EEL and can be thought of as a point in a 2r-dimensional

Euclidean space with coordinates z)

Z, = zk(t) (k = 1,2,...2r) (2.2)

The state of equilibrium (2.1), according to Liapunov, is said to be stable if
for any ¢ > 0 we can find a 5 > 0, depending on ¢ only (and possibly on to)
such that

2r

2 -
Z z) <8 at t-—to 2.3)
k=1

implies
2r
ji zk2 < ¢ for t, St <e (2.4)
k=]
In the opposite case the state (2.1) is called unstable.
The gtate is called asymptotically stable if it is stable and in addition
2r
lim 2

t= o Za
k=1

=0 (2.5)




This fundamental definition of stability by Liapunov has been refined and
supplemented in various ways and reference should be made to the comprehensive
texts by Minorsky [12], Krasovskii [13], LaSalle aund Lefschetz [14], and Hahn
[15]. A host of "fine" definitions has been introduced, e.g., uniform stabi-
lity, quasi-equiasymptotic stability, total stability, stability in the whole,
etc., [15] in order to classify possible effects of disturbances,

For the purposes of the present monograph it appears to be sufficient to
employ just three terms, pamely,

1) Asymptotic stability
2) Marginal stability
3) Instability

Types 1) and 3) have been defined above. Type 2) characterizes a state which
is stable, again as defined above, but not asymptotically stable,

Expressed verbally, one can say that a state of equilibrium is asympto-
tically stable if small disturbances, inflicted upon the system at a certain
time, decrease with time. The state is marginally stable if the disturbances
do neither decrease nor increase with time, and it is unstable if the dis-
turbances increase with time.

Side by side with Ligpunov's concept of stability, it is possible and
meaningful to introduce alternate definitions. The two other most current
ones are due to Poincaré (orbital stability) amd to Lagrange (boundedness of
motions and orbits), but the distinction vanishes for the special case of equi-
librium states. Further, it would be of interest to examine the behavior of
the system under continuous disturbances and under arbitrarily large disturb-
ances, For a discussion of the interrelation of various concepts of stability
of dynamical systems, reference is made to Magiros [16]. Genmeralization of
these concepts to continuous systems is not readily accomplished, becaus: the
notion of a metric has to be introduced, cf. Chapter V.

Having accepted a definition of stability, the first step in the analysis
of the state of equilibrium of a system imvolves the consideration of criteria
which would permit to decide whether a given state is asymptotically stable,
marginally stable or unstable. In dynamical, discrete systems two categories
of criteria have been evolved, one being based on the construction of the so-
called Liapunov's function (Liapunov's direct method), the other being based on
the examination of solutions of equations of motion and, in continuous systems,
modal expansions. In problems of stability of equilibrium the former is re-
lated to the energy criterion which in turn, for certain systems, is equivalent
to the static criterion (Euler method). The latter is usually referred to as
the kinetic criterion or the vibration criterion, For a detailed discussion of
stability criteria reference is made to [5-7,14].

The applicability of stability criteria, as emphasized by Ziegler [1,5-7,
17], strongly depends on the forces present in the mechanical system, If the
forces depend explicitly on time, they are called imstationary, if they do
not, they are called stationary. The stationary forces generally depend on




both the generalized coordinates and generalized velocities. If velocity-
dependent forces do no work in any elementary change of position, they are
called gyroscopic forces (e.g. Coriolis forces); if they do negative work,
they are referred to as dissipative (e.g. viscous damping, drag). Among the
velocity-independent forces, i.e., forces which depend on generalized coordi-
nates only, one encounters those which are derivable from a single-valued po-
tential. These,; such as for example, gravitational forces, are termed non-
circulatory (or conservative), All other velocity-independent forces are re-
ferred to as circulatory, or nonconservative, or follower forces. Strictly
speaking, dissipative, instationary and follower forces are all nonconservative
forces, but the terms circulatory forces, follower forces and nonconservative
forces are used in the literature with the same meaning and will be employed
interchangeably in this work.

The bulk of the present monograph is concerned with various classes of
mechanical systems whose common feature it is that follower (or circulatory,
or "nonconservative') forces are always present. To investigate the state of
equilibrium of such systems, the analysis can be based on linearized equations
of motion (or equilibrium, in certain cases) in the vicinity of the state to be
characterized. Since follower forces are statiomary, the system of equations
obtained is autonomous (mo explicit time dependence) and homogeneous (no forcing
terms). In discrete systems the circulatory nature of the follower forces mani-
fests itgelf in that the force matrix is not symmetric, while in continuous
systems the boundary value problem is nonself-adjoint.

In this monograph both, extensions of Liapunov's direct method and the
“golution" method are employed, with emphasis on the latter. .In discrete sys-
tems one is then concerned with a study of solutions of the type

q; = AleXt or

= iwt
9 = Age

which leads to a study of the roots ), (or t) of the associated characteristic
equation [18]. If the real parts of all the characteristic roots A, are nega-
tive (or the imaginary parts of all the characteristic roots w, are positive),

the asystem ig asymptotically stable. By contrast, if at least ome of the char-
acteristic roots hk is positive (or Wy ie negative), the system is unstable.

If all the roots hk are pure imaginary (or w Ppure real), the system is margi-

nally stable (critical case). Liapunov’s theorems assert that linearized ana-
lysis 13 appropriate for asymptotically stable and unstable systems. In case
of marginal stability of a linearized system, no statement can be made regarding
the behavior of the actual nonlinear system.

The nature of the roots hk (or wk) can be determined without calculating

the roots themselves., A variety of methods have been déveloped for this purpose
[18], one of the most widely used being associated with the names of Routh and




Hurwitz.* Various definitions of follower forces as applied to continuous

bodies have been discussed by Sewell [19], Nemat-Nasser [2C¢], and Shieh and
Masur [217.

For additional references, relating in particular the two areas of sta-~

bility and control, the reader is referred to the recent bibliography by Wang
[108].

*
It has been called recently to the author's attention by P. C. Parks

[106] that it was Hermite [107] who has established comsiderably earlier the
conditions generally known as the "Routh-Hurwitz criterion."




CHAPTER III

NONDISSIPATIVE SYSTEMS WITH TWO DEGREES OF FREEDOM

3.1 An Illustrative Example

To illustrate some characteristic types of dynamic behavior, in the
vicinity of an equilibrium configuration, of a mechanical system subjected
to a follower force, let us consider a double pendulum, Fig. 3.1, composed
of two rigid bars of equal lengths #, which carry concentrated masses m, = 2m,

m,= m, The position of equilibrium P~ ¢2= 0 is to be investigated when the

system 15 subjected to a force P acting along the bars (positive when com-
pressive). For this purpose a perturbed configuration Gpl# o, ¢2# 0, but both

small) is investigated. In this position elastic restoring moments <Py and
c0p2-¢1) are induced at the joints and the direction of the load P is specified
to form an angle 0P, with respect to the direction of the bar in the equilib-

rium position.

This system has been investigated by Ziegler [5] for the special case
o = 1, which may be termed the case of purely tangential loading. In Ref.
[22] the full range - @ < o < » has been examined. As can be easily verified,
the load P (and thus the system) is conservative only for ¢ = 0. The system
may be considered a two-degree-of-freedom model of a continuous cantilever.

The analysis, restricted to a linearized formulation, consists in the de-
termination of the two natural frequencies of free vibration as a function of
the loading. For sufficiently small loads both frequencies are real and the
system is thus stable under an arbitrary small disturbance, exhibiting bounded
harmonic oscillations. As the load is increased, instability may occur by
either one frequency becoming zero (static buckling) at the critical loading
and then in general purely imaginary, or the two frequencies becoming complex,
having passed a common real value at the critical loading (marginal stability).
The ensuing motion under a supercritical force in the first case is nonoscil-
latory with the amplitude increasing exponentially (divergent motion), and the
critical load can be determined statically by the Euler method. In the second
case the ensuing motion is an oscillation with a definite period but with an
exponentially increasing amplitude, and the critical load cannot be found by
the Euler method because no associated adjacent equilibrium exists. The first
case could be called "static instability" in view of the behavior at the criti-
cal load, and the second 'dynamic instability." In aercelasticity, however,
analogous phenomena have been termed ''divergence" and '"flutter,' respectively,
{23,247, and we propose to employ this terminology in the sequel.



Lagrange's equations in the form

d /3L\ _2oL _ = T -
4 (&bk) o % (L =TV, k = 1,2) (3.1)

are used to establish the linear equations of motion, in which the kinetic
energy T is

) Y 2 . . 2
T =5 ml [3¢1 + 29,9, + ¢, ] (3.2)
the potential energy V of the restoring moments is
1 2 2
ve=35ec 207 - 200, +9,7] (3.3)

and the generalized forces Q, (due to applied loading) are

Ql = PL[(PI - Q‘Pz]

(3.4)
Qz = PL[(I'Q’)CPZJ
These forms lead to the equations of motion
2 2.
3ms ¢1 + mt 9, + (2c-P1,)cp1 + (ozPL-c)cp2 =0
(3.5)
2-- 2”
m P, +mp, - cp, + [e - (1-)PL] 9, =0
which, in turn, stipulating exponential solutions of the form
9 = A" (k = 1,2) (3.6)
yield the frequency equation
4 2
PO - Pyw +p, =0 3.7
where
p_ = 2m2L4
p, = mt?[7e - 2Q2-0)Pt] (3.8)

2 - (- [3ePt - (p1)?]
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The four characteristic roots will occur in pairs, the positive and nega-
tive roots of the two values of w2 obtainable directly from the frequency
equation. For a negative w2 one root describes an exponentially divergent

motion; wz = 0 corresponds to neutral equilibrium, the appearance of an ad-
jacent equilibrium configuration (static buckling, divergence). A complex

value of w2 yields one root describing an oscillation with increasing ampli-
tude (flutter). The system is thus stable only as long as both values of w

are real and positive. We are interested in the manner in which wz varies
with P for different values of . This is accomplished by investigating the

curves of P versus real values of wz.

Expanding the frequency equation we find that it is a general quadratic
equation in wz and Py, of the form

A2 + B(o?Pe) + c(@e)? + DW?) +E(PL) +F =0 (3.9)
where the discriminant, B2 - 4AC, is

4m?s® [2(1-0) + o?] (3.10)

Since this expression is always positive, the frequency curves (P versus wz;
P, wz, real) are all of the hyperbolic type.

Except for degenerate cases, which shall be noted, there are but_two
general types of hyperbolas, with regard to orientation in the real w“, Pg
plane, that may be encountered, These two types, qualitatively, are of
“conjugate" orientations.

In the first type, each of the two branches of the hyperbola yields a
single (real) value of w2 for every load and the two values never coincide.
Instability may occur only in the form of divergence or divergent motions.

In the second general type of hyperbola, the two values of wz, for any

load producing real values of wz, lie on the same branch of the curve. For
each branch there is one critical load at which the two values coincide.

Regardless of the behavior indicated by the real values of w2 on the branches,
these two critical loads always bracket a single, limited range of the load

"between' the two branches of the hyperbola, for which the values of w2 are
complex and the free motions are of the flutter type. Since the system must
be stable for sufficiently small loads, these critical loads must be of the
same sign for any given value of ¢o.

11



The solution of the frequency equation is

2 _Jc - 2Q2-0)Pr ¥ (6()2[2(1-0) + o®] - 4cPr(8-a) + 41c2}H2

(3.11)
4mzz

®,2

from which P versus wy 22 can be plotted for any o. We determine, first,
’

the critical loads corresponding to coincidence of frequencies (occurring
in the second type of hyperbola) by setting the discriminant equal to zero

in the equation for wy 22. This yields, for the critical loads, in nondi-
?

mensional form, the equation

B (8o 7 [P a1[20-0) + P11 3.12)
c 2[2(1-a) + o]

Real values of these critical loads are associated with the second type
of hyperbola, complex values with the first. We wish to determine the tran-
sitional values of o. Thus, setting this discriminant equal to zero,

@-0? - 41 [20-0) + o] =0 (3.13)
yields the roots o = 0.345, 1.305.

Substituting this equation into that for @y 22 yields
b

1
(o 2] ) 7c - 2P (2-@) F JZI'[ZPL(S-Q) f_ﬁlc] 3. 14)
1,2 ‘o 2 ‘
’ tr 4mé

with ¢ = «__ = 0.345, 1.305.
tr

Thus two transitional values of o are obtained, at each of which the
hyperbolas degenerate into two intersecting straight lines. Between these
values of o the second type of hyperbola is found to occur, and the phenome-
non of flutter is thus limited to this range of o. The corresponding critical
loads are all positive (compressive).

Consider next the constant term P, in the frequency equation. The Euler
method is equivalent to setting P, = 0(w2= 0), corresponding to intercepts of
the hyperbolas on the P-axis. Setting P, = 0 we obtain for the Euler buckling

loads, in nondimensional form

SREIERI =i @13
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For real values of the load we must have o < % or @« > 1. Thus there are cri-

tical values of a(czcr = %, 1), marking the limits of a range in which no ad-

jacent equilibrium position occurs in the gystem for any value of the load.

We note from the form of P, that the lower critical value of o is a

function of the elastic and geometric parameters of the system, and under a
variation of these parameters might increase indefinitely, approaching one as
a limit. Thus, for o < 1 there is a class of systems or loadings wherein the
absence of an adjacent equilibrium configuration for any value of the load is
a function of the elastic and geometric parameters. However, for o = 1, the
terms in P, involving P drop out entirely, leaving a positive definite ex-

pression which contains the elastic parameter alone. Therefore, in this spe-
cial case alone, we may say that it is the specification of the loading itself
which results in the absence of any possible adjacent equilibrium configuration.
We note here that in the case of a uniform continuous cantilever subjected to a
load characterized by the same type of parameter, the Euler method reveals a
similar critical value of the parameter, which in that case is one half.

A third set of values of o of interest is denoted by a', and is associated
with a coincidence of an Euler load with a critical load for flutter. This
occurs when a value of wz, at which wlz = 22, is zero. Thus we set w, 22 =0,
bl

which is equivalent to setting P, = o, P, = 0, simultaneously; i.e.,

[7c - 2(2-a)P2] = 0O (3.16)
and

2 2

¢” - (1-0)[3cPt - (PL) "] =0 (3.17)

Solving the first equation for P{ and substituting into the s%cond yields a
quadratic equation in @, the roots of which are found to be ¢ = 0.423, 1.182.

In the sequel we restrict our detailed attention to 0 € o < 1, as this
range is somewhat more meaningful physically and is sufficient to demonstrate
a connection between the various instability phenomena. Figure 3.2 shows the
frequency curves for the various values of ¢ of particular interest in this
range. From these curves, in which both branches of the hyperbolas and their
asymptotes are shown for completeness, we can determine by inspection the par-
ticular character of the frequency curve for any « in the range 0 < o < 1, and
we proceed now to a discussion of the behavior of the individual curves in this
range and the various stability phenomena that they illustrate. '

For 0 s ¢ < o . the hyperbolas are all of the first type, and the behavior

is as previously discussed. The frequency curves and the characteristic beha-
vior of the nonconservative systems are qualitatively indistinguishable from
the conservative case. Obviously, the Euler method would yield the lowest
buckling load, which here marks the boundary between the single stable and

13



unstable ranges of the loading. A kinetic analysis would yield nothing addi-
tional. With increasing values of o in this range, the hyperbolag draw closer

to their asymptotes and finally degenerate into two straight lines at o = o

as previougly noted. This case marks the first occurrence of a coincidence of
the characteristic roots.

For values of o greater than o in this range, hyperbolas of the second

type, with the conjugate orientation, occur and pull away from their asymptotes
with increasing o. The upper branch lies entirely in the second quadrant, cor-
regsponding to divergent motion, and such an instability follows flutter with
increasing load.

In this range, for « r < a < @' the coincidence of frequencies on the

t
lower branch occurs at negative values of w2, with divergent motion already
characterizing both modes. Thus in this class of systems the boundary between
the single stable and unstable ranges of the loading parameter is marked solely
by the appearance of an adjacent equilibrium configuration in the first mode,
and is obtainable by the equilibrium approach. The system is unstable for all
higher loads. The critical loads corresponding to coincidence of frequencies
do not mark any bound between stability and instability.

Thus, for such systems, the Euler methed would yield the critical load
with regard to stability, even though the phenomenon of flutter is possible at
some higher loadings. Conversely, the sole use of the kinetic method, if em-
ployed so as to determine merely the critical loads corresponding to the coinci-
dence of frequencies, would lead to erroneous conclusions.

For a = o', wz at the coincidence of the frequencies on the lower branch
is zero. The sequence of instabilities with increasing load is the same as in
the preceding range of o.

For o > o' the coincidence of frequencies occurs at positive values of wz
and this critical point now marks the bound between a stable and unstable range
of the load. However, for o' <a< o the lower branch still intersects the

load axis, and the two corresponding critical loads, both occurring in the first
mode, now bracket a separate range of instability through divergent motion,

Such a system is rather remarkable in that it displays, for different loads,
losses of stability by both divergence and flutter.

Thus for ¢’ < a < o . we have a rather interesting sequence of free motions

with increasing load, resulting in multiple regions of stability and instability.
This is illustrated in Fig. 3.3 by the frequency curve for the arbitrary value

of ¢ = 0.5, Such a system has characteristic free motions which include succes-
sively stable oscillations, divergent motion, stable oscillations, flutter, and
then divergent motion again for all higher loads. 1In such a situation the lowest
critical load marking the appearance of an instability would still be a buckling
load, obtainable by the Euler method. However, the existence of the second range
of stability, above the second 'buckling" load, as well as its upper limit, would
be revealed only by a detailed kinetic analysis.
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For o = oy the two buckling loads, bracketing the lower region of insta-

bility, coincide and the frequency curve is tangent to the load axis. Thus in
this case there is a divergence instability at that isolated load, with no
associated divergent motion for neighboring loads. The sequence of instabilities
is otherwise the same as for o' < o < oy
For o < . the lowest critical load was always a buckling load, obtainable
by the equilibrium approach, and varied continuously with . Above @, no ad-

Jacent equilibrium configurations occur and the lowest critical load is that
corresponding to the coincidence of the frequencies., There is thus a disconti-
nuity (jump) in the magnitude of the lowest critical load, at o = o e Systems

in the class - < o < 1 possess a single range of stability and of instability,

with a sequence of characteristic free motions of stable oscillatiomns, flutter,
and finally divergence for all higher loads.

The foregoing discussion could be extended to the values of o outside the
range 0 < ¢ < 1, but is omitted here for the sake of brevity. However, a plot
showing the variation in all the critical loads for a wider range of o, including
the entire region of flutter instability, and with the asymptotic behavior of
the critical loads for divergence clearly indicated for extreme values of o, is
given in Fig. 3.4.

Considering systems corresponding to given values of o, this plot illus-
trates that in systems displaying multiple regions (and types) of instability
under compressive loading, the lowest critical load may correspond to either
divergence or flutter. Also illustrated is the existence of systems displaying
instability by divergence for both compreasive and tensile loads.

With the aid of the parameter ¢ in the simple model analyzed here, we have
attempted to show a connection between instability phenomena of divergence and
flutter by demonstrating a generic relationship between such disparate frequency
curves as those characterizing ¢« = 0 and ¢ = 1. Thus, such curves (and systems
characterized by them) may be seen to be not of a singular or isolated nature,
but part of a continuous ''spectrum" of frequency curves.

The justification for considering the entire range of - » < ¢ < + = may be
made clearer through the following observation. The type of loading specified
may be considered as the result of a superposition of two component loads, cor-
responding to constant-directional vertical loading (w =0) and tangential loading
(¢=1), the two being kept in a constant ratio as the loading is varied. 1In
such a perspective, 0 < ¢ < 1 corresponds to these component loads having the
same sense. Then, ¢ < 0 and o > 1 corresponds to these component loads having
opposite senses, with their relative magnitudes determined by the magnitude and
sign of ¢, and with positive load always corresponding to a resultant compressive
loading,

The effect of weights of the masses has not been included here, but our in-

vegtigations indicate that for small such constant loads the principal effect
consists in shifting the frequency curves in the positive (negative) direction
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of the abscissa for a suspended (inverted, Fig. 3.1) model. Referring to the
frequency curve in Fig. 3.2 for ¢ = 1, we can see that the shift caused by sta-
bilizing constant forces would result in an intercept of the upper branch of

the hyperbola on the w2 = 0 coordinate axis. This is, in fact, the case ana-
lyzed by Ziegler [5], in which the Euler method yielded a higher critical load
than the kinetic method, and which has contributed to the general discrediting
of the applicability of the static approach in nonconservative problems. This
particular case is somewhat equivalent to the situation occurring herein for

l<ax< . in which, under compressive loading, the system becomes unstable

through flutter, with the higher critical load, for divergence, of no conse-
quence.

3.2 General System with Two Degrees of Freedom

3.2.1 Governing Equations

Let us now generalize the specific results obtained in the previous section
and consider a general system with two degrees of freedom. Let 97> 9, be the

principal coordinates of the system and the equilibrium configuration 9= 9,= 0

is to be investigated with regard to stability. The system is characterized by

inertia (masses my and m2) and by restoring spring constants k1 and k2. Further,

it is subjected to follower forces whose magnitude is dependent on a single pa-
rameter., The linear equations of motion may be then written as

P * * =
m4; + kjq) +oy;Pq; +ap,Pqy =0

« . (3.18)
mydy * kyay a3 Pqy +apyPay =0
where d:j are assumed to be given. .
With the abbreviations
2 _
;" = ky/my
(3.19)
o, =¥ /m
ij i3'™
the equations of motion take on the form
4, + o 2q. + o, Pq, + a ,Pq, = 0
1799 11791 T %1279
(3.20)

v 2
q, + wy 4, + a21Pq1 + azquz 0

We wish to characterize the position of equilibrium for various ranges of P and
for various ranges of the system parameters. For this purpose we investigate
solutionsg of the type
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iwt
a = Ae ws k= 1,2 3.21)
which lead to the homogeneous set

2, 2
(~w +w; +ozllr) A; + o ,PA) = 0

(3.22)
2, 2

a21PA1 + (~w +w2 +a22P) A2 = 0

and finally to the characteristic equation
= 2_ 2 -
P ghe [y + e rg)P] € 4 (Bphe P (Gyhgy P appay B = 0 (3.29)
where
2 2
E€=u", g o 1=1,2 (3.24)

This equation represents a curve of second degree (a conic section) and may
be written in the normal form

F = a§2 + 2bEP + ch + 2dE + 2eP + £ = 0 (3.25)

where the coefficients are given by

a=1 b= - ogytHey))/2; € = a0y - 0%
(3.26)
d = - (§1+§2)/2; e = (a11§2+a22§1)/2; f=gE
The invariants of the characteristic curve are
b d
2
A= c e | = a12a21(§2-§1) /4 (3.27)
e
and
a b 2
6 = b . = - [Qall-azz) + 4a12a21]/4 (3.28)

If A # 0, equation (3.25) represents a regular second degree curve, namely,

an ellipse for § > O
a parabola for § = 0

a hyperbola for § <O
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while, if A = O, the curve degenerates into two real or imaginary straight
lines.

The system may lose stability, as we have seen, either by oscillating
with increasing amplitudes (flutter) or by moving to another position of equi-
librium (divergence). The critical values of P are associated with stationary
points of the characteristic curve for £ > 0 (flutter) and with points of in-
tersection with the P-axis (divergence). The ranges of system parameters aij

and w, will be determined in which either flutter or divergence or both flutter

i
and divergence may occur.

3.2.2 Parameter Ranges

A. d12a21 >0

It will be shown that in this case no flutter can occur., First we de-
termine the points of intersection of the characteristic curve (which is a
hyperbola) with the P-axis which are

P=- (e + / e -cf ) /e for c # 0 (3.29)

P=-f/2 for ¢ = 0 (3.30)
The discriminant

D=e?-cf=[( )2 + 4o 1/4 (3.31)

1152792281 129215152

is positive and therefore there exists at least one real point of inter-
section,

To find stationary points of the characteristic curve F(E,P) = 0, we
have to calculate

dF/dP = - (dF/3c)/ (SF/3P) (3.32)

and set this derivative equal to zero. If JF/3P # 0, it will be sufficient
to examine

QF/OE = 2 + 2bP + 2d = 0 (3.33)

This equation ig to be solved for § and a substitution made into the
equation for the characteristic curve which in turn, solved for P, yields

P=- [(e-bd) iJ(e-bd)z-(c-b)z(f-dz) ] / (c-b%) (3.34)

In terms of system parameters the discriminant is
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(e-b)? - (e-b?) (£-a%) = - o) 0y, (8y-E 2214 (3.35)

Let us assume first that the two natural frequencies w, of the system are

i
distinct. (The special case wy = W, will be discussed separately.) This

implies that the discriminant in Eq. (3.34) is negative and thus no real
points with a horizontal tangent exist, indicating impossibility of occur-
rence of flutter,

For ¢ 2 0 and e < 0, the solutions P of the characteristic equation are
positive. The system is marginally stable for all values of P in the range
- o< P < Pl, where P1 is the smaller value of P from Eq. (3.29) and unstable

for P 2 2 (see Fig. 3.5a). Similarly, for ¢ > 0 and e > 0, both solutions

of Eq. (3.29) are negative. Hence, the system is marginally stable for
P, < P < @ (vhere lP1| < |1>2|) and unstable for P < P, (see Fig. 3.5¢). If

c < 0, the two roots of Eq. (3.29) have different signs. In this case the
region of marginal stability is given by P2 <P< Pl’ while the system is un-

stable for P 2 P, and for P < P2 (see Fig. 3.5b).

B. 0

2%

If o5 and/or ¥y = 0, the characteristic equation takes on the form
F = [allp - (g_gl)][azzp - (g-gz)] =0 (3036)

which represents two straight lines which may be considered as the limiting
case of the hyperbolas of the previous section approaching their asymptotes.
Again flutter cannot occur and stability can be lost by divergence only. The
regions of marginal stability and instability are given in Fig. 3.6.

In the special case o = 0 the elgenvalue curve degenerates into

11 %22
two straight lines parallel to the P-axis. Thus no instability can occur for
any value of P.

C. 0

¥12%;
a) Existence of Flutter

In this subsection the ranges will be established in which flutter may
occur or cannot occur. We solve Eq. (3.33) for P

P=- (EHd)/b b¥0 (3.37)

and substitute into the characteristic equation with the result

ag2 - 2BE +Cc =0 (3.38)
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which has the solutions

gI’II = (B + / BZ-AC ) /A for A# 0

E =¢/28 for A=0
where
A=c-b2=-[(a - )2+4a o, .1/4
117%2 12%21
B = Be - od = - [loyymap,) oy 8ymag,8) )+ 2,05, (§1485) 1/4
C = cd? - 2bed + bt
and

N BTRAG = oty 0) (8y-8) (f-ag,0y, /4

We first consider the case A # 0. With the notation
2
Ay T Es @y TY, @ty TP, Vo= Ey/E
we obtain
NI’II =B % /B2~AC = -5 [(x-y)(vx-y)-2P2(1+V)i(x+y)(l-v)p]/4
which may conveniently be written in the form
Np,it =~ 5181874
where
glI,II =y - x%2p

gZI’II =y - vx ¥ (vtDp

Similarly we write A in the form
A=-hh/4

where
h1 =y -x -~ 2p

h2 =y -x+2p
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Thus we find

I,i1  I,II
S =58 & /gy, (3.49)
Since 9 and hi are linear functions of x and y, it is easy to specify con-
ditions for which EI or ;II’ respectively, are positive or negative. The

result ig given in Fig. 3.7 in which the shaded area indicates that both
solutions §1 are negative and flutter cannot occur, while in the remaining

area at least one gi is positive and flutter may occur.
In the case A = 0 we had § = ¢/2B which may be written as

g = 321 gzn / UGxty) (x-y) (v-1)] (3.50)

The solid lines in Fig. 3.8 show the region where £ > 0, while the broken
lines indicate £ < 0.

It remains to investigate what happens if b = 0, The characteristic
equations degenerate in this case to

F=t2+cP? +2d€ + 2eP + £ = 0 (3.51)
and

OF/3E = 2E + 2d = 0 (3.52)
It follows that

£=-d>0 (3.53)

and the equation for P is now

cP2 + 2eP + £ - d2 =0 (3.54)

whose solutions are

P=- [e i,/e -c(f-dz) ] /c for c # 0 (3.55)

P = - (£-d%)/2e for ¢ = 0 (3.56)
Since

2 - c(e-a?) = - a0, Ey-g P4 > 0 (3.57)

there is always a real solution for P which means that flutter may occur
for b = 0.
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b) Existence of Divergence

The discriminant D of equation (3.29) may be written as
p=g2ce /4 (3.58)
1172 y

where

t; =y - vx+ 2p /v
(3.59)

t, =y - vx - 2p Jv

It can be shown that t, = 0 are equations of the tangents to the hyperbola

i
c = xy + p2 = 0,

Real points of intersection with the P-axis exist 1f D 2 0. The plain
area in Fig. 3.9 indicates the region where D > 0, i.e., where divergence is
possible, while the shaded area indicates that D < 0, where divergence is not
possible.

For the case ¢ = 0 we have to uge equation (3.30) and find that the
gsolution P is finite except for the points T and T’ at which the tangents
t, = 0 touch the hyperbola ¢ = 0 (see Fig. 3.9). Fig. 3.10 combines Figs.

3.7 and 3.9 and shows a complete plot of the regions in which flutter or di-
vergence, respectively, may occur or cannot occur, Fig. 3.10 can easily be
constructed if p = -0 900 and v = §2/§1 are given.

3.2.3 Summary of Resgults

If the loading parameter P is increased or decreased from its initial
value (which need not be zero), the system may either remain stable, or it
may lose gtability by flutter or divergence. The results of the corresponding
analysis are summarized in Fig. 3.11. Fig. 3.12 indicates qualitatively the
ranges of stability for the loading parameter P for the various regions of the
system parameters given in Fig. 3,11, Since substituting ¥y for o and

0y, for ¥yy only reverses the orientation of the P-axis, the ranges of stabi-

lity for the regions of system parameters indicated with a prime are obtained
by substituting -P for P. Thus, Figs. 3.11 and 3.12 give a complete plot for
the ranges of stability of the system for the case o19% 7 < 0.

In many problems the initial value of the force P is zero, and one is
only interested in how stability is lost first if a positive (or negative)
force P is applied and increased. Fig. 3.13 shows whether stability is lost
by flutter or divergence, respectively.
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3.2.4 Special Case W = W

If the two natural frequencies of the system coincide, the characteristic
curve degenerates into two real or imaginary straight lines. The characteris-
tic equation (3.23) may then be written as

F= [cP + b(b+JF—: )(g-go)][cp + (b- ﬁ)(g-go)] =0 (3.60)
for c # 0
F= (26P+&-E8)(-E)=0 for ¢ = 0 (3.61)
where
g, =€ =&, (3.62)

It is easily seen that for 01,0y > 0 and for @100 = 0 the results given
in Figs. 3.5 and 3.6 hold if one sets 51 = §2. The results for @19, <0

are illustrated in Fig. 3.14, TIf the system parameters fall into the regions
II, III or 1V, only divergence may occur. For system parameters in region I,
flutter will occur for each nonvanishing value of P, while for system para-

meters corresponding to point Q no instability will occur for any value of P,
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CHAPTER IV
DESTABILIZING EFFECTS

4.1 Introduction

It has been discovered by Ziegler [5] not quite two decades ago that in-
ternal damping may have a destabilizing effect in a nonconservative elastic
system. He considered a double pendulum with viscoelastic joints as a model
of an elastic bar with internal damping and let a tangential force act at the
free end. The critical loading obtained in complete absence of damping was
found to be considerably higher than by including damping at the outset of
the analysis and then letting the damping coefficients approach zero (vanish-
ing damping) in the expression for the critical force.

This rather surprising and seemingly paradoxical finding was ascribed in
later studies by Ziegler [6,7] to the possibility that internal damping is in-
adequately represented by linear damping forces which are linear combinations
of the generalized velocities and that the hysteresis effect should be taken
into account.

The destabilizing effect of damping was further elaborated upon by Bolotin
[8] who considered a general two-degree-of-freedom system not related to any
particular mechanical model and who found additionally that the destabilizing
effect in the presence of slight and vanishing damping is highly dependent on
the relative magnitude of damping coefficients in the two degrees freedom.

Additional insight into the destabilizing effects of linear viscous
damping in systems with follower forces may be gained by not merely applying
stability criteria but by studying also the roots of the characteristic equa-
tion (cf. Ref. [25]). Further, the results of the mathematical stability in-
vestigations may be interpreted in physical terms by introducing the concept
of degree of instability. It becomes then possible to carry out a gradual
transition from the case of small damping to the case of vanishing damping
and relate both of these cases to that of no damping.

4,2 Illustrative Examples of Systems with Two Degrees of Freedom

4,2.1 A Model

For this purpose again a two-degree-of-freedom model is considered, Fig.
4,1, composed of two rigid weightless bars of equal length ¢, which carry con-

centrated masses m = 2m, m, = m, The géneralized coordinates P> @ are again

taken to be small. A load P applied at the free end is assumed to be acting
at an angle P (pure follower force). At the joints the restoring moments

cq + b1¢1 and c(qh-q&) + bz(&h-&l) are induced.
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The kinetic energy T, the dissipation function D, the potential energy V,

and the generalized forces Q, and Q2 are

1 ,2,00 2, o0 o o2
T =g w3 298+ 6,0

1 . 2 1
D= 2 blcPl 2 Z(CP 2¢1(P2+ (Pz )

1 2 2
V=3 e(29,7- 29,0,+ @,7)
Q, =0

Lagrange's equations in the form

) BD oT | ov

dt (Expi +§pI=Q1

i =1,2)

are employed to establish the linear equations of motion

3m.e2tp1 + (b1+b2)<'pl (P2-2c)9, + mg qJZ- byd

2.,

+ (PL- c)cp2

. 2.. .
m{ P - b2¢1 - 9, + mf P, + b2¢2 + cp, = 0

which, upon stipulating solutions of the form
Py = Aie
yield the characteristic equation
4 3 2 0

P+ P17 + P00 +pyQ +p, =

with the coefficients
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and the dimensionless quantities
1
a-e (e

bi
B = 73 (1 = 1,2) (4.7)

i z(cm)l

PL

P =2
c

In the abgence of damping (BI=B2-0), the characteristic equation is a
biquadratic

0% + @22 +1 =0 (%.8)

4,2.2 (Critical Loads

From the assumed form of the time-dependence for the coordinates ?y and

on the basgis of the kinetic stability criterion, it is evident that if all
four roots of the characteristic equation are distinct, the necessary and
sufficient conditions for stability are that the real roots and the real
parts of the complex roots should be all negative or zero. In case of equal
roots the general solution of Py will have terms which contain powers of t

as a factor., If the real parts of equal roots are negative, the system will
be stable (vibration with decreasing amplitude), but if these real parts are
zero or positive, stability will not exist (vibration with increasing ampli-
tude).

Let us turn our attentiom first to the case of an initially undamped
system, The four roots of the biquadratic equation as a function of F are
(a special case, @ = 1, of the problem treated in Section 3.1)

%550 7 {E[F - G- ) [r - (20 v2)]7) .9

which, depending on the values of F, may turn out to be pure imaginary roots,
complex roots, or pure real roots. The nature of these four roots as F varies
is graphically illustrated in Fig. 4.2 in which the values of the roots are
given by the intersection points of the root curves and the horizontal plane
which is perpendicular to the F-axis and passes through the given value of F.
The illustrations in Fig. 4.2 include a perspective of the root curves, and
also the orthographic projections on the real plane (Im Q = 0), the imaginary
plane (Re Q = 0) and the complex plane (F = 0).

It is found that there will always be two roots with positive real part
if F > % -/2 =2,086 = F,. For F = F_ there exist two pairs of equal roots
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whose real parts are all zero. Thus the system is unstable for F = Fe. For
F < Fe all roots are distinct and pure imaginary and thus the system is mar-

ginally stable.

We consider next a slightly damped system, assuming Bl = Bz = 0.01. No

simple expressions for the four roots of the quartic equation exist; the
numerical results obtained are illustrated in Fig. 4.3, where a perspective
view is supplemented by three projections of the same three planes as in
Fig. 4.2, Two roots will have a positive real part for F > 1.464 = Fd.

Stability can be investigated directly without determining the roots of
the characteristic equation by applying the Routh-Hurwitz criteria, which re-
quire that all coefficilents pj(j =0, ..., 4) of the characteristic equation

and the quantity
2 2

be positive. For positive damping thege stability conditions are satisfied,
provided

- 1
p, = 2[- 7 + 3 (7+B1B2)] >0
(4.11)

2 2
4B1 + 33BlB2+ 432

2 2 1
X=2( +7BB+6B){—F+[ +—BB]}>0
1 12 2 2(]3124_71313 +61322) 2 172

2

For the system to be stable F must satisfy the following two inequalities,
where B = BI/BZ’ 0<B<o;

7 1
F < 2 + 2 Ble

(4.12)

2
F < 48 +233§ + 4 + % 3132
2(p"+7p+6)

Since
48%+ 338 + 4 _ 7
2(87+78+6)

for whatever B in its range, it is evident that the critical load will be
governed by the second inequality, i.e.,

_ 2
Fd=“ ;’33 *"+%3132 (4.14)
2(B"+78 + 6)
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which depends on the ratio as well as the magnitudes of the damping coeffi-
cients.

For Bi << 1, as well as in the limit of vanishing damping, Fd becomes

2
F, = 48 +233 + 4 (4.15)
2(8"+78+6)
which is highly dependent on B and is in general smaller but never larger
than Fe. The ratio of Fd to Fe versus B is plotted in Fig. 4.4. It is noted
that when 8 = 4 + 5 /2 = 11.07, Fd/Fe reaches its maximum value 1, The de-

stabilizing effect is thus eliminated in this particular case, similar to that
found by Bolotin [8]. For 8 = 0, Fd/Fe reaches its minimum value 0.16; i.e.,

the maximum destabilizing effect is about 84 percent inm the present two-
degree-of-freedom system.

4.2.3 Case of Vanishing Damping

The two disparate values of the critical load for no damping (Bi = 0) and
vanishing damping (Bi* 0) justify a more detailed investigation of the limiting
process as the damping coefficients approach zero.

Let us examine first the limiting process for the roots of the character-

istic equation. It can be shown with the aid of the theory of equations [26]
that if Bi << 1 and F < 4.914 this equation will have four complex roots. Let

these roots be
Yy 1Y,
Q= (4.16)
Xl + 1x,

Then one can write [26]

Py
2(Y1+ Xl) = - ;;
4.17)
2 2 2 2 X
Ay 0 DO A ™ (o) TTHE DT (-2, = 3
o
where p_, Py, and X are as defined earlier. For vanishing damping
Y, + A, =0
1ot (4.18)

vih Lo a3 ()2l % (vr,m0)%1 = 0
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Hence

Y1 = “Ap Yo = 2y
or (4.19)
Yl = xl =0
Thus
+ iy Y, ¥
Q = 2 or Qa{l 2 (4.20)
+ ikz Y1 + iYZ

and a substitution of these four roots into the characteristic equation will
show that they are the same as in the case of no damping.

In the case of F 2 4,914, the four roots will all be real for small B,.

Let i
u, tu
q=4 1} 2 (4.21)
vy + vy
In the limit of vanishing damping one can show similarly that either U= V= 0
or u,= -v, and u,= v,. For either alternative, substitution into the charac-

1 1 2 2
teristic equation reveals that the roots are the same as in the case of no
damping.

Thus the conclusion is reached that whatever F the roots of the charac-
teristic equation for no initial damping (Bi= 0) are identical to those of

vanishing damping (Bi - 0). This implies that the motions of the system, for

some given initial conditions, and whatever F, will be identical in the case
of no damping (Bi= 0) and vanishing damping (Bi - 0).

We focus attention next on the loading F in the two cases and before
passing to the limit consider small damping (Bi << 1). The positive real part

of the roots of the characteristic equation in the range F, < F < Fe for seve-

d

ral small values of B, and, as an example, B, = 0 (i.e., B = 0) have been cal-

2 1
culated and the results are displayed in Fig. 4.5, where F is plotted as a
function of Re ( for nine values of BZ' This figure illustrates that for the

larger values of Bz, Fd represents the critical load because for F > Fd some

roots will have a nonvanishing positive real part. A small increase of the
load above Fd will result in a large increase of this real part. For small

values of B however, even though Fd is still strictly speaking the critical

2)
load, its gignificance is lessened, because a small increase of the load above
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Fd will not result any longer in a large increase of Re (). Large increase of

Re (Q will now be associated with small increase of a load which is slightly
lower than Fe' For vanishing damping Re () = 0 for any F < Fe. We thus con-

clude that during the limiting process the significance of F, as a critical

d
load is gradually transferred to Fe, and at the limit of vanishing damping

(Bi - 0) Fe has to be considered as the critical load. It is apparent now

that this conclusion could only be reached by considering the roots of the
characteristic equation and not by merely applying the stability criteria of
Routh-Hurwitz. Further, the reasons for the stability criteria yielding dif-
ferent critical loads for no damping and for vanishing damping can be better
understood by having considered small damping.

4.2.4 Degree of Instability

It was established in the preceding section that for vanishing damping
(Bi - 0) the four roots of the characteristic equation become identical to

those of no damping (Bi = 0) while the stability criteria alone would in gen-

eral yield disparate critical loads in these two cases.

To establish a further connection between the mathematically derived
critical loads for no damping (Bi = 0) and vanishing damping (B1 -~ 0) it ap-

pears helpful to introduce into the discussion a concept which might be called
"degree of instability" and which embodies a relaxation of the concept of in-
stability as used when applying the kinetic stability criterion. According to
this latter criterion a system is stable if a suitable disturbance results in
a bounded motion in the vicinity of the equilibrium configuration; e.g., the
system is unstable if a disturbance leads to oscillations with increasing am-

plitude (flutter instability). For this type of logs of stability one can state

that from a practical point of view it will certainly matter how fast the am-
plitudes increase.

For example, should a suitable initial disturbance be merely doubled in a
time interval which is large as compared to, say, some reference period, while
the duration of the system being subjected to a nonconservative force is by
comparison relatively short, the system may be considered practically stable,
while, mathematically, of course, one would have to conclude that it is un-
stable.

In order to weaken the kinetic stability criterion, one could prescribe
arbitrarily the allowable increase of the disturbance and would then obtain
for a given value of the load a critical time, not unlike in the case of creep
buckling. As an alternative, one could introduce another measure of the rate
of amplitude increase. By analogy to decaying oscillations, where the loga-
rithmic decrement serves the purpose of quantitatively assessing the rate of
decay, we can use the same quantity also as a measure of the rate of amplitude
increase. Thus

A

6 = log (4.22)

An+1
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where Ah is the amplitude of the oscillation at a certaimn time t and Ah+1 is

the amplitude at t + T, where T is the period. 1In the present problem, neg-
lecting the terms of decaying magnitude in the general solution of Py 5 5 gene-

rally will be time-independent for flutter motions, except when the characte-
ristic equation has equal pure imaginary roots.
The kinetic stability criterion requires &6 =2 0; i.e., Ah 2 A A neg-

ative § properly could be called the logarithmic increment and in a real system
it is conceivable that § may attain a certain value 6c in a certain interval

of time without the system losing its stability in any practical sense.

For B = 31/32 = 1 the critical load F is displayed as a function of
B1 = B2 = B in Figs. 4.6 and 4.7. For however small but finite negative value
of §, the critical load for vanishing damping (B — 0) will always be that for
no damping (B = 0), namely, Fe. However, the critical load for small damping

(B < 1) may be smaller than Fe but for finite 8§, however small, is always
larger than Fd. For given § the value of (small) damping B which is associated
with the minimum value of the critical load can be determined.

For vanishing logarithmic increment (6§ — 0) the function F(B) approaches
a limiting curve which will contain the point Fd on the ordinate. For § =0
the stability regionm is closed; i.e., points on the curve § = 0 in Fig. 4.7
are stable, including the point Fd on the ordinate. For B = 0 it is the point
Fe which separates stability from instability, but belongs itself to the in-
stability region. This limiting process provides thus additional insight into
the generation of the critical load Fd'

4.2,5 A More General Model

Further interesting types of behavior may be discussed if the follower
force is generalized by means of the parameter « as discussed in Section 3.1
without damping. The system to be analyzed is that of Fig. 4.8 (cf. Ref. [27]).
The kinetic energy T, the dissipation function D and the potential energy V
are the same as in Sectiom 4.2.1, while the generalized forces Qi are the same

as those in Section 3.1. The associated equations of motion are

2.. . .
3t B + (b b)) - (PL-2c)p; + mtzf‘Pz - byp, + (@PL-c)9, = 0
(4.23)

2. . 2.. .
12 9y - by - oy + ml ?, + b2¢2 - {a-a)ee - c] P, = 0

which, upon stipulating solutions of the form (4.4) yield the characteristic

equation
A

3 2
pOQ + pIQ + pZQ + pBQ + P, 0 (4.24)
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with the coefficients
P, =2

Bl + 632

o
o
]

7+BlB2

2(2-0)

2(2-0) [- F + (4.25)

- - B+l
(1-0) (B;#28,) [- ¥ +

o {7 -3 [+ ()} {7 -3 [1 - (4429)'))

The dimensionless quantities , B, 4 and F have been defined in Eqs. (4.7) and
B is again B = B /B

4.2.6 Root Domains of Characteristic Equation

It was found that small damping rather than vanishing or large damping
is the cause of the destabilizing effect, and thus only small damping (Bi<< 1)
will be considered in the sequel.

Let us introduce first the following quantities:
gel _1l 2

6 PoP2 " 16 P1

% (x-2) [? - 5?%:53 ]

n

- 4 1 2
L=PPy =3 P1P3 T3 Py

LX:

15 [4(a?-100+10)F? + 4(25a-32)F + 73]

.1 L1 L 2 1 2 1 3
6 PoP2Ps T 48 P1PoP3 ~ 76 PoP3 16 P1 P4 ~ 216 P2

5%3 [ (8049607 -336a+224)F°
- (3480°-14640+1032)F>
- (13620-1212)F - 161] (4.26)

cont.
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K= pozl - 128%

-1
2[ (a-1)2%+1]

11}

- 4[(&-1)2 + 1] {F -

x {(8-0) + 6.325 [~ (2-0.345)(o~1.305)1"/21}

x {F - ——5— {(s-) - 6.325 [- (a-0.345)(a-1.305)]}1/2}
2[(a-1)“+1]
3 2 .1 2
A=1" - 27" = 3 p4K

X = - 2 - 2
Plpzp3 POP3 Py P4

B,2((1-)[B? + 128 + 4 - Ba(B+2)] F°

- [2(32+7a+5) + 2(1-a)(52+115-10)

+ (l-) (62+as+12)3132] F + [4sz+ 338 + 4 + (32+7ﬂ+6)3132]}

n

322 {(1-a)[52 + 128 + 4 - 8a(pt2)] Fz

- 2082 + 78 + 6 + (L-a) (B2+118-10)] F + (482433p+4) ) (4.26)
where PyreeesP, and other symbols have been defined previously.
It is known from the theory of equations [26] that:

(a) When A < 0, the characteristic equation has two real and two complex
roots.

(b) When A > 0 and both H and K are negative, the four roots are all real.

(c) When A > 0 and at least one of H and K is positive or zero, the four
roots are all complex.

These criteria lead to the different root domains shown in Fig. 4.9.
The domain marked by crosses indicates the existence of four real roots; that
marked by dots corresponds to two real and two complex roots; and that marked
by horizontal dashes or by diagonal lines indicates the existence of four com-
plex roots. The more detailed nature of the roots and the related stable and
unstable behavior of the system may be deduced from the following.

Domain A >0, H< 0, K< 0

This domain is marked by crosses in Fig. 4.9, In it, P,s Pp» and p, are
always positive; P, is always negative., Applying the well-known Descartes'
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rule of signs, regardless of the sign of Py» it is seen that in this domain

the four real roots of the characteristic equation are always pairs of two
positive and two negative ones. Consequently, this is throughout a region
of instability by divergent motion.

Domains A < O

These domains are marked by dots in Fig. 4.9. Let the two real and two
complex roots in these domains be represented by

py * ip
a=4 17 2 %.27)
r1 t r2

From the relations between roots and coefficients in the theory of equations
[26] and the definition of the expression X in the Routh-Hurwitz criteriom,
the following relationships hold:

2(p+r)--ﬁ'----l(3+63)<0
1 "1 P, 2 Y1772

2 2 2, 2 P3 1
2[p1(r1 'rz ) + 1'1(91 +pz )1 =- po = - 2 P3

(4.28)
2, 2,2 2 _P4_1
(p]_ +pz )(rl “1'2 ) po 2 P"_
2 2 272 2
4pqTy {[(91*‘1) tp, -1, ] + bpy’r 2 } x

As p4 is always negative in these three domains, the third of the foregoing
equations indicates that

>r (4.29)

which, in turn, shows that the two real roots are of opposite sign. Hence
these three domains are also regions of instability. Again, recalling that
P, < 0, it is seen from the foregoing four equations that the real part of

the conjugate complex roots will be negative if X > 0 or if X < 0 and Py < o,
but will be positive if X < 0 and Py > 0. Whence it follows that divergent

motion will prevail in this region, of the type as sketched in Fig, 4.10(a)
if X>0o0or if X < 0 and P3 < 0, or as in Fig. 4.10(b) if X < 0 and Py > 0.

It is noted that, if the system is undamped (B1 = 0), Py and r, will vanish
identically, The undamped system will therefore undergo divergent motion of
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the type as sketched in Fig. 4.10(c). By definition, in all these cases, the
system is unstable.

Domain K > 0

This domain is marked by horizontal dashes in Fig. 4.9. Let us denote
the four complex roots in this domain by

vy T iy
a={¢ 17 72 (4.30)
61 + 162

Then, as before, the following relationships are obtained:

.. h
2(y;#8;) = - == = - 5 (B,#6B,) < 0
° (4.31)
2 2 2 2 X _1
Gy 8,00y 4607 + (v 18,0 " 0CY #8)" + (v,-8,)"]1 = —3 =3 X
P
(]

which indicate that Yy and 61 (the real parts of the two pairs of conjugate
complex roots) both will be negative if X > 0 but of opposite sigm if X < 0.

Now, within this domain, we have
K=8p, -p.2>0 (4.32)
4 2 ‘

or

1_ 2
P, >%F Py (4.33)
which, in turn, leads to
X< -2 (4p, - pp)2 <0 (4.34
"8 "P3 T PPy +34)

Therefore, the real parts of the two pairs of conjugate complex roots are of
opposite sign. The nature of these four roots indicates that in this domain
the system will flutter.

Domain A >0, H>0, K< 0

This domain is marked by diagomal lines in Fig. 4.9. As the four roots
are all complex, the signs of the real parts of the roots will also be governed
by the signs of X as asserted in the foregoing., Thus the system will vibrate
with decreasing amplitude (asymptotic stability) if the values of o and F are
in those parts of this domain where X > 0, However, the system will flutter
if the values of o and F are in those parts where X < 0.
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Further separation of stability from instability in the present domain
is governed solely by the sign of X. This is illustrated for the four cases
of =0, 1, 11,071, and », as shown in Figs, 4.11, 4.12, 4.13;, and 4.14, where
the regions shaded by diagonal lines are regions of stability; those shaded by
horizontal dashes are regions of flutter; those shaded by small triangles are
regions of divergent motion of the type shown in Fig, 4.10(a); those shaded by
dots are regions of divergent motion of the type shown in Fig. 4.10(b); and
those shaded by crosses are regions of divergent motion in which the time in~-
crease of the generalized coordinates is of the expomential type.

It is to be noted that, in the present domain (A >0, H >0, and K < 0),
if the damping effects vanish, the four complex roots of the characteristic
equation will all be pure imaginary and distinct. Thus the undamped system
executes steady-state vibrations and is marginally stable throughout the domain,
as found in [22].

4.2,7 Nature of Boundaries Separating Different Root Domains

In this section, the boundaries given by X = 0, Py = 0, and K = 0 will be

examined. For the sake of convenience, the term "boundaries given by X = 0"
will be restricted to mean only those parts of the curves given by X = 0 which
lie in the domain A >0, H > 0, and K < 0.

Boundaries X(«,F,B) = O

On these boundaries, the characteristic equation has, by definition of X,
two roots equal in magnitude but opposite in sign. These two roots are

)1/2 (4.35)

P
3
0,2 * (- Py

where Py is positive for positive damping. It is found that the curves Py = 0,
P, = 0, and X = 0 have a common point of intersection which is given by

, B2 +3g +1
a:

282 + 58 + 2 .36
.36

el o 28+ 1
F=F =977

Further, as Py = 0 and X = 0 have only one point of intersection at (a’, F')

on p, = 0, it is evident that, along the boundaries given by X = 0, Py is

always positive, This can be seen from Figs. 4.11, 4.12, 4,13 and 4,14,
Consequently, Ol o are two distinct pure-imaginary roots. The sum of the
»

other two conjugate complex roots is -p1/po = - % Ps which is negative (for
positive damping). Hence, along the boundaries given by X = 0, the charac-
teristic equation has two pure imaginary roots equal in magnitude but opposite

in sign and two conjugate complex roots with negative real part. Thus the

37



system will execute steady-state vibrations as a result of some initial dis-
turbance. It 1is only in this case that the damped, nonconservative system can
undergo such motions.

Point of Intersection of X = O, P3 = o, P = 0

At this common intersection point denoted by (a’, F’), the characteristic
equation has two zero roots. The other two roots, being given by

poﬂ? +p,Q+p, =0 (4.37)

are two conjugate complex roots with negative real part, The two zero roots

will induce two terms of the form ¢; + c,t in the general solution of @, .

Thus the system will execute divergent motion in which the increase of P is

linear with respect to time. This point («’, F’) is the only one at which the
stability region for the damped, nonconservative system is open.

Points of Intersection of P, = 0, X=0,8=0

Let us introduce the quantity

S =p,py - PP;3 (4.38)
such that
2
X p3S - PP, (4.39)
It can be shown that the curves P, = 0, S =0, and X = 0 have two points of

common intersection, denoted by (a“, F*) and (o, F”), where

o'\ _ (58%+2288+1440) T [ (552+1808+800)°- 64008(8+6) 172

o 16 (156+112)

o _5(pt8 (4.40)
2(B+10-4a")

¥ = 5(g+8)
2(p+10-40x

These two points usually exist when B is finite, but the point (a*, F”) ap-
proaches infinity as p » ». At the point (o s F "), the character}stic equa-
tion has one zero root, one positive real root equal to (-p /p ) , and two

negative real roots equal to -(-p3/p ) 1/2

will execute divergent motions. At the point (a”, F”), the four roots are

and -pllpo, therefore, the system
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one zero root, two pure imaginary roots equal to % (-p3/p1)1 , and one nega-
tive real root equal to -pllpo; hence, after the initial disturbance, the
system will execute steady-state vibrations about a certain position which in
general is not the position whose stability is being studied.

Boundaries p, = 0, Excluding Points (a’, F’), (", F"), and (o™, F")

Along these boundaries, the characteristic equation has ome zero root and
three other roots given by

3 2
pOQ + plﬂ + pZQ + Py = (4] (4.41)

where, by the theory of equations and for small damping (Bi << 1), the three
roots all will be real if P, < Q, but one real and two complex if Py 20, 1In
the range of either F < F' or o > o along P, = 0, the four roots are found

to be one zero root, one negative real root, and two conjugate complex roots
with negative real part. The nature of these four roots indicates that, after
the initial disturbance, the system may execute transient vibrations and then
come to rest at a position which in general is not the position whose stabi-
lity is being studied. This phenomenon can be interpreted as a stabilizing

effect of viscous damping because the same system with no damping would execute

divergent motion,

The curves P, = 0 (i.e., H=0), P, = 0, and K = 0 have two common in-

tersection points at (0.423, 2,219) and (1.182, 4.281), In the range of
F/’<F <2,2.9 along P, = 0, the four roots are ome zZero root, omne positive

real root, and two conjugate complex roots with negative real part. 1In the
range 2.219 < F < 3 along P, = 0, the four roots are one zero root, one posi-

tive real root, and two negative real roots. Thus, in the range of F'< F < 3
along P, = 0, the system will execute divergent motions.
In the range F¥ < F < 4.281 along P, = 0, the four roots are one zero

root, one negative real root, and two conjugate complex roots with positive
real part; and thus flutter will occur. In the range F > 4,281 along P, = o,

the four roots are one zero root, one negative real root, and two positive
real roots; hence the system will undergo divergemt motions.

Boundary K  8p 2. 0

4 - P2

The exact curve of K = 0 is

2 12 .3 4\
RK=8,-p - (Plpa‘ 2 Py Pyt er Py ) 0 (4.42)
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As B, and, hence, p, and p, are assumed small, of the order of 10-3, the last

three terms in parentheses are higher-order terms and may be neglected. Thus

= 2 _
K - 8P4 p2 = 0 (4043)
is a boundary curve which is close to the exact curve K = (0, Substituting

%‘pzz for P, in X, we have
1 2
X=-3 (p;p,-4pg) " < 0 e 5l)

which indicates that the system will be unstable when o« and F are on the
boundary curve given by K = 8p4 =Py, = 0, except at the point where X vanishes

and P3 is positive (steady-state vibrations). The instability mechanism, on
the whole, will be of the flutter type, except at the points where the exact
espressions of K and H are all negative (divergence).

4.2.8 Influence of Damping Ratio on Instability Mechanisms

In the preceding sections, it was established that stability is possible
only in the region (A >0, H >0, and K < 0), which is marked by diagonal
lines in Fig. 4.9. 1In this region, the sign of X governs the type of motion,
i.e., the system is stable if X = 0 and unstable if X < 0.

Critical loads for divergence, if any, are given by P, = 0; i.e., they
are

Faiv "% [1 * (ﬂg_-_)l/z] (4.45)

lew

On the other hand, critical loads for flutter, if any, are always given by
X =0, i.e., they are

_ 2(8%498-2) - o(p%+118-10) 2(8+6) [ (82-228+1) 0%+ 3380 - 981172

Fera 8(5+2) (a-1) (o) (4.46)
where 1 # o # ., and
2
= 4 128 + 4
o L—L——s 5125 (4.47)

The two vertical lines ¢ = 1 and o = @ (Figs. 4.11 to 4.14) are asymptotes

of X = 0, For o = 1, the critical load is given by
492 + 338 + 4
Felulo=1 = 2 (4.48)
2(8"+ 78 +6)
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which was studied in Sect. 4.2.2, For o = @5 the critical load for flutter,
if any, becomes

4B+ 2)(48% 338 + &)
fluloe, g% 4 763 . 50p2 - 3328 + 24

¥ (4.49)

The curves of critical loads for 8§ = 0, 1, 11.071, and « are illustrated in
Figs. 4,11, 4,12, 4,13, and 4.14,

For oo = 0 (conservative case) in Fig. 4.11, the point (0, -1), which is
an intersection point of two branches of the curves given by X = 0, is itself
on the boundary given by X = 0; therefore, this point corresponds to steady-
state vibrations of the system. The point (0, -1) is thus also a point re-
presenting stagbility rather than a point which indicates an isolated critical
load for the conservative system {« = 0) with damping. However, depending on
the ratio of damping coefficients, a nonconservative system (¢ # 0) may have
multiple critical loads for flutter, in addition to those for divergence, at
the same value of o anywhere in the range « >,0 except for 5/9 < & < 1 where
critical loads for flutter only will occur. Fig. 4.11 illustrates that, for
B = 0, flutter will occur for any ¢, except o = 0, while Fig. 4,12 shows that
the smallest range of ¢ in which flutter is possible becomes minimum
(5/9 < & < 1.305) when the damping coefficients are identical (i.e., B = 1).

It was found in Sect. 3.1 that the presence or absence of neighboring
equilibrium positions was strongly influenced by the behavior of the noncon-
servative loading and also by the constraints of the system, A further re-
sult of this study is that the ratio of the damping coefficients may exert an
analogous influence and may thus render the static criterion inapplicable for
systems in which, without damping, the critical load could be determined sta-
tically, For instance, it is seen that, in the ranmge 1/2 < o < 5/9, the sta-
tic stability criterion is applicable if B = « (see Fig. 4.14) but breaks
down if B = 0 (see Fig, 4.11),

Similarly to applicability, the sufficiency of the static stability
criterion (in the sense of supplying all critical loads) also depends on the
ratio of damping coefficients, To exemplify this feature, let us examine
again Figs. 4.11 and 4,14, In the range o < 1/2, we note that the static
stabilicy criterion is sufficient if B = = but proves to be insufficient if
B = 0. The equation P, = 0 expresses, in fact, the static stability cri-~

terion, i.e., the condition of the static equilibrium of the system in the
vicinity of its mneutral configuration, Thus the static stability criteriomn
is implied in the kinetic stability criterion, which is usually sufficient in
determining all critical loads for the nonconservative system.

It is possible to identify the range of « in which flutter cannot occur,
and thus the application of the kinetic criterion is not required. However,
this range will depend on the ratio of the damping coefficients. To determine
this range, we consider the expression‘Ffl derived in this section, Flutter

cannot occur if the quantity (B - 228 + 1) az + 33Bx ~ 9B appearing under the
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square root in that expression is negative, Thus flutter may occur in the
following ranges:

@ za and asaz if B>a1 ors<a2 (4.50)
or

a1>a>a2 if 81>B>32 (4.51)
vhere

a, . =11 % /120 = {21-95 (4.52)

1,2 0.046
and
2 1/2
_ =338 + [B(368"+ 2978 + 36) 1]
®1,2 2(B-a,) (B-a,) ’ (a; # 8 # 3y (4.53)

I£fB = a, or B = 255 the range in which the kinetic stability criterion must

be considered will be only o = 3/11, Consequently, if there exists any range
of o which is outside the foregoing specified ranges, the static stability
criterion alone will be sufficient to determine all the critical loads, de-
spite the nonconservativeness of the loading. However, according to the pre~
ceding section, if o < @/ or o > &”, the static stability criterion defini-
tely will be applicable but not necessarily sufficient in determining all
critical loads.

4.2,9 Possibility of Elimination of Destabilizing Effects

Critical loads for flutter in the undamped system analyzed in Sect. 3.1
are given by the equation K(a, F, Bi) = 0 with the terms due to small damping

neglected; i.e., by the equation

R(e,F) = - [4(o-20H2)F% + 4(a-8)F + 417 = 0 (4.54)
Critical loads for flutter in the damped system analyzed here are given by
X(o,FyB) = 0 (4.55)

whose loci conmstitute, in fact, a family of curves im the « - F plane with B
as the parametric constant. Different curves of the critical load for flutter
will be obtained if differemt values are assigned to B imn X(a,F,B) = 0.

To study the interrelation between the curves of critical loads given by
K(o,F) = 0 and X(o,F,B) = 0, let us examine the envelope of the family of
curves defined by X(x,F,8) = 0. It is known that, if an envelope exists, it
must satisfy

X(«,F,B) =0 (4.56)

42




and
2. X(,F,B) = 0 4.57)
oB

Elimination of B in these two equations yields

®-2)[ (L-a)F-2][4(1-a)F-5]1%-K(c,F) = O (4.58)

where K(«,F) is as defined before, However, this equation may contain some
curves which are other than the envelope. Deleting these, the true envelope
is found as given by

[(1-2)F - 2] * K(a,F) = 0 (4.59)

Thus the curve for critical flutter loads of the system with no damping is a
branch of the envelope of the family of curves of the critical flutter loads
of the same system with damping. This remarkable relation shows a significant
connection between the two governing equations of the critical loads for
flutter of the undamped and the damped systems.

In consequence of the foregoing relation, it appears possible to elimi-
nate the destabilizing effect of damping on the critical loads for flutter in
the damped system if we choose the value of B which defines a curve of the
family X(«,F,B) = O tangent to K(«,F) = 0 (the envelope) at the given value
of o, Eliminating F in X(«,F,B) = 0 and (o/38)X(«,F,B) = 0, we find that
this value of B is given by the positive, real root of the quintic

(8« - 3) (7o - 3) (4o - 3)B°- (896c°- 5,9360°+ 8,1960°

4 3

- 3,8700 + 594)p%- (12,80007- 60,9280°+ 82, 68007

4 3

- 38,6640 + 5832)8°-~ (80,128a%- 365,2800°+ 502,4160°

- 234,576 + 34,992)p%- (353,280a°- 1,480,3200°

+1,925,85607- 874,800c + 128,304)B - (838, 6560
- 2,941,0560°+ 3,411,0720%~ 1,469,664x + 209,952) = 0 (4.60)
and the critical load for flutter in this case is given by
(15-320)8%+ (24-1280)B + (84-496a)
2[ (6-17a+80°) B+ (24-92rt320°)B + (120-484cr+2560°) ]

F = (4.61)

which will be identical to the critical loads for flutter of the same system
with no damping.

For example, if the elimination of the destabilizing effect of damping
for the case o = 1 is desired, B must be equal to the positive, real root of
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the quintic
B> + 68% - 868> - 88482 - 26128 - 2448 = O (4.62)

i.e.,

B=4+5/2=11.071 (4.63)

which, together with o = 1, yields
F =-27- - /2 =2.086 (4.64)

The critical load for o = 1 in the undamped system determined in [5,22,25]
is identical to the value we obtained in the foregoing. The complete elimi-
nation of the destabilizing effect for this case is thus attained, as is il-
lustrated in Fig. 4.13. For « = 3/4, a similar procedure will show that the
destabilizing effect is completely removed when B = », This is illustrated in
Fig. 4.14,

The possibility of a complete elimination of the destabilizing effect de-
pends on the existence of a positive, real root in the foregoing quintic. The

range of « where the elimination of the destabilizing effect is of interest to
us is, of course, 0.423 < o < 1.305. However, it is found that in the range

3/7< o< 3/4 (4.65)
the quintic has no positive, real root., Thus, in this range, the system will
always experience some destabilization for whatever value of 8 in its range

0 <B <o,

For instance, let us consider the case o = 0,6, where the critical load
for the system with no damping is

bl =
F, =33 (37 - 6 /5) = 2,033 (4.66)

while the critical load for the system with damping is given by

e o L8+ 11,48 +2 - (5+6)[0.365+ 2,888 + 0.361"/2 %.67)
d (3.2 + 6.4)(ab- 0.6) °
where
2
B+128+ 4 (4.68)

% =78 + 2)

The ratio of Fd
value of Fd/Fe increases as B increases and approaches 29/5(37-6 /5) = 0,984,

instead of 1, as the upper limit when B approaches infinity; i.e,, the desta-
bilizing effect of damping is at least 1,6 percent if the value of a is kept
at 0,6,

to Fe versus B is plotted in Fig. 4.15. It is noted that the



In the range 1.182 < o < 1,305, the undamped system has multiple critical
loads for flutter given by K(o,F) = 0. However, an investigation of the roots
of the quintic shows that, for any « in the range 1.182 < o < 1.285, there is
only one positive, real root which defines a curve of the family X(a,F,B) = O

tangent to the lower part of K(«,F) = 0, Thus, in the range 1.182 < o < 1.285,

the damped system has no critical load which is given by the upper part of
K(a,F) = 0,

As an alternative, the possibility of eliminating the effects of damping
could also be studied by equating the frequencies first and then the critical
forces, obtained with and without damping., The frequency of the undamped
system is given by

In Q=37 - 202-0F1'/2 (4.69)
while the frequency of the system with damping is given by
P - -
ImQ = C;§> B,+B ) (1-) (B +232)F 1/2
Py B, + 65, (4.70)
Equating the two expressions and eliminating F in K(o,F) = 0 leads to
2 3 3\ .2 2 2
8 (a ~ INE - % B+ 4(16a - 33 + 9)B + 4(182¢" - 297 + 81) =0 (4.71)

which, in turn, gives the range of Eq. (4.65) in which elimination of the
damping effect is not possible for positive damping.

Fig. 4.16 illustrates the function B(«) which insures elimination of

damping effects, For completeness, the required values of negative B in
the range 3/7 < oo < 3/4 have also been indicated.

4.3 Damping and Gyroscopic Forces in Systems with Two Degrees of Freedom

The joint effects of follower forces, linear viscous damping, and gyro-
scopic forces (i.e., velocity-dependent forces which do no work) have been
studied in Ref. [28]. Considered was the system with two degrees of freedom

q) +a)q) + a0y + byyd; Fbypq, = 0
. (4.72)
U + 8519 F 8,9, + by39; F Byyd, = 0

The matrices aij and bij can be resolved uniquely into a symmetrical and anti-
symmetrical part:

a a a a 0 P
o f12| )t izl .73
21 3 21 92 P 0
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where

* - * = == -
al, = ay; (a12+321)/2, P (a12 a21)/2 (4.74)
and
*
b b b b 0 ®
1 Pzl _ 11 12{ . %.75)
P21 P2 521 P2z w 0
where
* = * = = -
b12 b21 (b12+b21)/2, w (bl2 b21)/2 (4.76)

By a suitable transformation of the form

q, ® ﬁl cos ¢ - 52 sin @
(4.77)
q, = il sin @ - ﬁz cos @

or bfz to vanish, Choosing the first pos-

... for ﬁl, ﬁz, b;z, the following

it is possible to make either 8:2

sibility and writing again 91> 9p> b12

system of equations is obtained:

) +8139; +Pay *+ by yq; + (bt w)g, = 0
. . . (4.78)
9y - Pqy * 8,4, + (by,- w)qy +byeq; =0

The system has a potential energy function (is noncirculatory) if p = 0, it
is purely circulatory for a),= 2,," 0, it is nongyroscopic for w = 0, and is

undamped 1if b11= b12= b22= 0.

Solutions are sought in the form
At
q Aie 4.79)

which lead to the characteristic equation

4 3 2
cox + clk + czx + c3k + € = 0 (4.80)
where
c =1
o
c, =b.. +b (4.81)

cont.,
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2

=g . +a,, + (b b122) +

cy ™8y tay 11°12°

C3 = 8y1bpy *+ 2550y, + 2P0
2
€4 T 81385 t P (4.81)

For stability it is required that ¢, 2 0 (1 = 1,2,3,4) and that in addition

i
X = c.cc, - ¢ el - ele, >0 (4.82)
17273 o3 174 °
i §3 c1= c3= 0 this additional condition takes on the form
¢ -4ec, >0 (4.83)
2 €04 ‘

It is to be noted that if c,= 0 but c3# 0 (or cl# 0 but c.= 0) the first in-

1 3
equality cannot be satisfied and thus the equilibrium is always unstable re-
gardless of the actual values of the nonvanishing c

i
Let us now examine the special case of an undamped system, bij= 0. The
coefficients c; are then
2 - _ 2
¢ 0, cy a, + a,, +w, €y = 2pw, 4 = 81189, +p

(4.84)

Since ¢y 0 and c3# 0 the system is unstable regardless how small the

follower (circulatory) forces and the gyroscopic forces are.

Another special case of interest in which explicit results can be ob-
tained is

a;; =8, =a >0, b11 = b22 =b>0, b12 = 0 (4.85)
Then we have
c,= 2b, c,= 2a + b2+ wz, cy= 2 (ab+pw), .= a2+ p2 {4.86)

For stability we must require

ab2 + pw >0 (c3 > 0)
(4.87)

ab2 + pwb - p2 >0 X > 0)

It is again seen from the second inequality that no stability is possible for
b = 0 or for small b, The damping coefficient b has to be sufficiently large,

namely

47



48

b > (- o +‘Jp?(w2+4a) ) / (2a) (4.88)

to insure stability. 1In the absence of purely gyroscopic forces, w = 0, the
stability condition is

b > p//a (4.89)

4.4 Discrete Systems with Many Degrees of Freedom

Generalizing the findings concerning destabilizing effects found with
gspecific examples of systems with two degrees of freedom, it is possible to
state a number of theorems which are applicable to a rather broad class of
systems with N degrees of freedom, (Ref. [29]). 1In particular, it can be
shown that not only slight viscous damping, but all sufficiently small
velocity-dependent forces may induce a destabilizing effect.

The system considered is assumed to be holonomic and autonomous, and
is subjected to a set of generalized forces, Qj = Qj(F); j=1,2,...,N, which

are defined as linear functions of a real, finite parameter F. This para-
meter, (0 < F < ), is associated with the magnitude of the externally applied
forces, Qj =0 for F = 0.

Let
dq,

- = - P |
a;=d; =0, (j L2,..N 5 &= 37 ) (4.90)

be the equilibrium state of the system. With M = [Mjk] the generalized mass

matrix, and
N
=1 7
V= 2 z Kjkqjqk (4.91)
j,k=1

the strain energy function, assumed to be positive definite, the equations
of motion of the undamped system may be written as

Mjqu + Kjqu = Qj j,k =1,2,...,K (4.92)

where the summation convention on all repeated indices is implied and will
be employed in the sequel,

Let us agsume that the generalized forces, Qj’ are given as linear

functions of the generalized coordinates

Q = FKyq i,k = 1,2,...,N (4.93)

where K = [Kjk] is a nonsymmetric matrix, and F a real, finite parameter.



For F = 0, (4.92) represent the equations of free oscillation of the undamped
system which we assume to possess N distinct, non-zero frequencies.

In conjunction with (4.92) we shall consider the following linear system
MG + €64 +Ryaq = Qy j=1,2,...,N (4.94)

where ¢ is an infinitesimal quantity, G = [ij] a generally non-symmetric

matrix with prescribed constant elements. For ¢ = 0, Eqs. (4.94) reduce to
Eqs. (4.92).

In the following sections we shall prove that the critical load of system
(4.92) is an upper bound for the critical load of system (4.94) when 0(e2) can
be neglected in comparison with O0(e). Only the effect of velocity-dependent
forces on the critical load of the system for flutter will be considered. The
effect of these forces on the critical load for divergence is discussed in
Refs. [6,7].

In the present context, therefore, the theorems proved in the sequel are
applicable only when a linear system loses stability by flutter.

It is also of importance to note that an autonomous, linear, dynamic
system can lose stability by flutter if and only if a solution of the form
q = Akeiwt; k =1,2,...N, admits, at least, one @ with negative imaginary

part. Further, we will employ the well-known property of linear autonomous
dynamic systems of the type (4.92) that the roots of the characteristic equa-
tion are either real or pairs of complex conjugate numbers.

Let us first consider the effect of slight viscous damping. Thus we as-
sume that G = [ij] is a symmetric, non-negative matrix.

t

We take solutions of (4.92) and (4.94) in the form q = Akeiw ; 1 =/-1,

and obtain
- szjkAk + (ijk-rxjk)p.k =0 (4.95)

- wZMjkAk + einjkAk + (’1'<jk-1-*1<jk)Ak =0 jok = 1,2,...,N (4.96)

Systems (4.95) and (4.96) are each a set of linear, homogeneous equations
in Ak' They have, therefore, nontrivial solutions if and only if the deter-

minant of the coefficients of Ak’ in each set, is equal to zero. These con-

ditions yield

det |ajk| =0 (4.97)

det |ajk + eiucjk‘ =0 (4.98)
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2
where ajk - W ij + (ﬁjk-FKjk), and det lajkl denotes the determinant of

the matrix [ajk].
For F = 0, Eq. (4.97) yields the natural frequencies of the free vib-
ration of the undamped system. We assume that these frequencies
2 2 2
;" <w,” < .o <)

are distinct and non-zero. We now increase F and assume that for a certain
value of F, say Fe’ Eq. (4.97) yields, at least, a double non-zero frequency.

Let us suppose that, for F = Fe’ wlz is equal to w22 (see Fig. 4.17(a)), while

all other (N-2) frequencies of the system are distinct and non-zero. If F is
now increased beyond this critical value Fe’ Eq. (4.97) will yield a pair of

complex conjugate roots and, consequently, the system will oscillate with an
exponentially increasing amplitude (flutter). We shall refer to Fe again as

the critical load for the system without damping.
Let us now consider Eq. (4.98). For F = 0, the roots of this equation
are all located on the left-hand side of the imaginary axis in the complex

iw plane. As we increase F, at least, one of these roots approaches the im-
aginary axis, and for a certain value of F, say Fd’ Eq. (4.98) yields, at

least, a real value for w (see Fig. 4.17(b)). If F is now increased beyond
this critical value Fd’ at least, one of the roots of (4.98) becomes complex

with negative imaginary part. The system, therefore, loses stability by
flutter. We shall refer to Fd as the critical load for the system with

damping.

In the sequel we will first study a system with two degrees of freedom
and then extend our results to more general systems.
We expand the frequency equation of the damped system as follows

= det |a, l + eiuG k3_ ezwzdet |G
jk

e i,k = 1,2,  (4.99)

det |a + elud PRI

jk‘

where akj is the cofactor of the element a Kk in the det |ajk1' Moreover, we
agsume that det ‘G.k‘ # 0 (the case of det |ij| = 0 will be discussed later).
Then, for det Iij finite and ¢ of infinitesimal order, we may neglect the
last term on the right-hand side of Eq. (4.99) and obtain

. kj .
det ‘ajk‘ + eiw ija =0 j.k = 1,2 (4.100)

Theorem 1. The critical load, Fe’ is an upper bound for the critical

load, Fd’ when 0(62) can be neglected in comparison with 0(e).
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Proof. For F = Fd’ Eq. (4.100) has, at least, one real root, w = w, and

the other roots are either real or complex with positive imaginary parts (the
possibility of complex root with negative imaginary part is excluded, ag it
contradicts the assumption that Fd is the critical load). Therefore, for

F = Fd and @ real, det ‘ajkl and ijakj are both real and we must have
det |ajk| =0 (4.101)
ijakj =0 jk = 1,2 ‘ (4.102)
However, det |ajk| = 0 cannot admit real roots if F > F_ . Therefore
Fd < Fe'

Let us note that Fy can equal Fe if and only if the real root of (4.102)

can be made equal to the double root of (4.101) for F = Fe' This, of course,

depends on the other parameters of the system and may not always be achieved,
as exemplified in Sect. 4.2.

We now retract to Eq. (4.99) and consider the case when det lij‘ = 0,

The frequency equation of the damped system with two degrees of freedom is
now given by Eq. (4.100), independently of the order of magnitude of ¢.
Following the line of reasoning similar to that used in the proof of Theo-
rem 1, we conclude that the critical load of the system without damping is
an upper bound for that of the system with damping, no matter what the order
of magnitude of ¢ may be. Therefore, we state the following theorem.

Theorem 2. The critical load, Fe’ of the system without damping with
two degrees of freedom is an upper bound for the critical load, Fd’ of the

system with damping for all finite values of ¢ when det ‘ijl = 0.

The proof of Theorem 1 was an immediate consequence of a property of
the frequency equation of the system with damping and with two degrees of
freedom. The problem becomes more complicated if the system has more than
two degrees of freedom, However, one may still use a similar line of rea-
soning.

We expand Eq. (4.98), collect the terms of like power in ¢, and obtain

a4 0e?) + ..., j.k=1,2,..N (4.103)

det ‘ajk+ eiw G 1k

jkl = det ‘ajkl + eiw G

The first term on the right-hand side of this equation is a polynomial of

degree N in wz and may be written as

.20 o 2N 2 (N-1)
det | ajkl = P(W) = Py + P W +...+ P (4.104)
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Similarly, the term G akj, which is a polynomial of degree (N-1) in wz, can

jk
be written as

2(N-1) 2(N-2)

kj _ 2, _
ija = R(w ) = RN-lw + RN-Zw ces + RO (4.105)
Therefore, Eq. (4.103) becomes
det lajk+ elw ijl = P(0?) + iew R@wD) + 0D + ... (4.106)

We neglect O(ez) and higher in Eq. (4.106) and obtain

P(w?) + iew R(w®) = 0 (4.107)
for the frequency equation of system (4.94). We now set w = X\ + iey and

substitute into P(wz) and R(wz) to obtain

2
P(\+iey) = P(xz) + iey [ZX 92%)-] + O(ez) + ...

d) (4.108)
ROFiey) = R(Z) + 0(e) + ...
Therefore, Eq. (4.107) becomes
2
P2y + ie [zv Q% + R()\z)] +0(e) +...=0 (4.109)
aQ®)

Neglecting terms of order higher than ¢, we must have

2 2
p0%) =0, v=- 221 pp? - 2E0D 4 (4.110)
2P’ (\%) (%)

The first equation in (4.110) is the frequency equation of the system
without damping and the second equation defines, to the first order of appro-
ximation in ¢, the effect of slight damping on the frequencies of the system.

The constraint given by P'(lz) # 0 indicates that the perturbation method
breaks down when P(kz) = 0 admits double roots. For F = 0, the roots of equa-
tion P(Xz) = 0 are all real and distinct. Thus in this case, to the first
order of approximation in e, the roots of Eq. (4.107) are

ROV

+ W = + Xk + ieYk, Y = ; k=1,2,...,N (4.111)

YN
2P’ ()

where sz are real, positive roots of P(Xz) = 0., The system can perform
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oscillations only with an exponentially decaying amplitude and, therefore,
all Yy k =1,2,...,N are positive, real numbers,

We shall now assume that the system with damping is stable for all
F < Fd and consider the following cases:

(a) F<F,6 < Fe

d
(b) Fe<F<I-‘

(4.112)

a Fe<Fy

For case (a), P(xz) = () yields N distinct roots. From Eq. (4.111) we
then obtain Y3 k=1,2,...,N, which are, by our assumption, all positive,
real numbers.

For case (b), P()\)2 = Q0 has, at least, one pair of complex conjugate
roots. We denote these roots by Il 2 = (o £ 1B) and from (4.111) obtain
»

2
+
=+ (ot ip) - i¢ —RL(xE 1B) g (4.113)
2P ‘[ (o % 1B)“]
which indicates that, for F >-Fe, the system with damping admits, at least,

one complex frequency with negative imaginary part. This, therefore, con-
tradicts the assumption that the system is stable for Fd >-Fe. We are thus

forced to take Fd < Fe in order to remove the contradiction.

Let us note that, for F = Fd = Fe’ Egqs. (4.111) can be used only for the
distinct roots of P(Az) = 0. The perturbation method, which was introduced

here breaks down if P'(Az) = 0(e¢) while R(AZ) is non-zero. We shall not,
however, concern ourselves with a detailed study of this case here and simply
admit the possibility of Fd = Fe. In fact, as Fd >-Fe renders the system

unstable, we can only comclude that F

a5 Fe' Therefore, we may state the
following theorem.

Theorem 3. The critical load, Fe’ of system (4.92) is an upper bound
for the critical load, Fd’ of the system with slight damping when ¢ is suffi-
ciently small.

For an arbitrary specified matrix G = [ij] due to any type of velocity-

dependent forces (including gyroscopic forces), system (4.94) may become self-
exciting, That is, for an infinitely small value of F, the frequency equation
of this system may possess complex roots with negative imaginary parts. In
these cases we shall agree to define Fd = 0 as the critical load of this system.

On the other hand, the frequency equation of system (4.,94) may yield roots
with only positive imaginary parts for F = 0(¢). This indicates that this
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system igs stable for small values of the load parameter F. However, as we
increase F, one of these roots may move toward the imaginary axis in the iw
plane. Therefore, for a certain value of F, say Fd’ the frequency equation

of system (4.94) may yield a non-zero, real root. In this case, if we then
increase F beyond this critical value Fd’ the frequency equation will have a

root with negative imaginary part and the system will flutter. We shall re-
fer to Fd as the critical load of system (4.94). On the basis of the above

preliminaries it is now possible to follow the same chain of arguments out-
lined previously and establish the following more general theorems,

Theorem 4, The critical load, Fe, of system (4.92) is an upper bound
for the critical load, Fd’ of system (4.94) when ¢ is sufficiently small,

G =[G need not be a symmetric, positive definite matrix.

k]
Theorem 5. The critical load, Fe’ of system (4.92) with N = 2 is an
upper bound for the critical load, Fi of system (4.94) for all finite values
of ¢ when det [ijl =0, G= [ij] need not be a symmetric, positive definite

matrix.

From the above results we immediately conclude that, in a linear system
with N degrees of freedom, subjected to nonconservative (i.e. circulatory)
forces, not only slight viscous damping but all sufficiently small velocity-

dependent forces have, in general, a destabilizing effect. Moreover, the
critical load, Fd’ is highly dependent upon the structure of the matrix

G = [ij] but is always bounded from above by the critical load F,. This in-
dicates that, even at the limit as ¢ -» O, Fd is in general less than Fe. Let
us explore this point in more detail for a system with two degrees of freedom.

For ¢ finite, the steady state motion of the system is possible if the
frequency of the oscillation satisfies the following equations (see Eq. (4.99)):
2 2 kj .

det {ajk| - €0 det lcjk| =0, Gua” =0; k=12 (4114
In this case, one may solve the second equation in (4.114) for w as a function
of F and then substitute the result into the first equation to obtain a re-
lationship between F and ¢. In this manner a stability curve, in the F-¢
plane, may be constructed (see Fig. 4.18). However, from Theorem 1 we im-
mediately conclude that, in general, th.; curve suffers a finite discontinuity
at ¢ = 0, This means that, although for ¢ = 0 the critical load is Fe’ for

¢ = 0" the critical load is given by Fd which is, in general, less than Fe'
Therefore, the point Fe is, in general, an isolated point in the F-¢ plane
(Fig. 4.18). This phenomenon was interpreted physically in Sect. 4.2,
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4.5 Destabilizing Effects in Continuous Systems

4.5.1 Introduction

It was shown in Sect. 4.4 that in a general circulatory system with N
degrees of freedom not only slight viscous damping, but all sufficiently small
velocity-dependent forces, such as Coriolis forces in vibrating pipes conveying
fluid, or other gyroscopic forces, may have a destabilizing effect.

For a continuous system, however, which possesses an infinite number of
degrees of freedom, no such theorems are as yet established. To study the ef-
fect of viscous damping forces in such systems most investigators, in general,
reduce first the continuous system to a discrete one by means of, for example,
the Galerkin method, and then study the reduced, discrete system [8,30,31].
But, as was shown in Sect. 4.4, a discrete system does, in fact, always have
this property, except in very particular cases. Therefore, by this approach
one does not know whether the original continuous system also exhibits the
same behavior or whether it is produced only through the reduction procedure.

Let us show that the presence of sufficiently small velocity-dependent
forces in a continuous elastic system subjected to follower forces does, in-
deed, have a destabilizing effect (cf. Ref. [32]). To this end, a cantile-
vered, continuous pipe conveying fluid at a constant velocity is considered.
The internal and external viscous damping forces are also included, and then
it is proved that the critical flutter load of the system may be reduced by
almost 507 for some combinations of these velocity-dependent forces. The
method of analysis effectively reduces a complicated nonself-adjoint boundary
value problem (without discretization) to a simple frequency analysis by uti-
lizing fully the fact that the velocity-dependent forces are sufficiently
small.

It is of obvious interest to test the accuracy of the widely used Galerkin
method with a two-term approximation. It is to be noted that such an analysis
of this approximate method, for the case when the equations of motion of the
system also contain mixed time and space derivatives, has been carried out in
Ref. [32] for the first time.

Critical flutter loads of the system, for small velocity-dependent forces,
and also for large values of Coriolis forces, were obtained by using the Galer-
kin method with a two-term approximation. The results are then compared with
the exact solution. It is then shown that the two-term approximation yields
sufficiently accurate values for the critical flutter load only if the velocity-
dependent forces are small. Thus, for large values of Coriolis forces the cri-
tical load obtained by the Galerkin method with a two-term approximation may be
greatly in error.

4.5.2 Cantilevered Pipe Conveying Fluid

We consider a cantilevered, uniform pipe of length L and internal cross-
sectional area A, conveying fluid at a constant velocity U. A nozzle whose
opening is n times smaller than A i1s placed at the free end of the system, as
is shown in Fig. 4.19.
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We shall assume that the material of the pipe obeys a stress-strain re-
lationship of the Kelvin type, i.e.,

o = Ee + Te (4.115)
where E is the modulus of elasticity and T is the coefficient of viscosity.

Under the assumption of plane sections remaining plane, the moment-curvature
relationship, for small deformations, is

2 3
-;‘—I=-[a—§+%\ . (4.116)
9 ox ¥t

where M is the resultant moment at section x and at time t, I the moment of
inertia, and y the transverse deflection of the pipe. With u denoting the
displacement in the x direction, and z the distance of each fiber from the
neutral axis, we also have

o)
o= %ﬁ , ¢ = SE R us=-z3e (4.117)

The equation of motion may now be stated as

2
9_154 = p (4.118)
ox

where p is the resultant lateral force exerted on the pipe. This lateral
force may be decomposed into three parts. The first part is due to the
2
inertia forces and is given by + (m + ml) 9—% , where m is the mass of rhe
At
pipe per unit of length, and m, the mass of the fluid contained within the

pipe. The second part is due to Coriolis acceleration and is given by

2
+ 2m1U %;%E , and finally, the third part, which is due to equivalent com-
pressive force induced by the flux of momentum out of the pipe, and is given
2
by + m1U2n é—% . Therefore, the equation of motion becomes
ox
2 2 2 2
OM . wim) X+ 2m v L + muln X (4.119)
2 1 2 17 dxot 1 2
ox dt ox

and substitution from (4.115), (4.116), and (4.117) into (4.119) finally
yields

3% 3 2 32 a2 3%

EIZTL + M 2L + nvn =L + 20,0 =L + (mim,) L =0 (4.120)
4 4 1 2 1Y 3xot ) 2
ox 9x ot ox ot
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If we include also the effect of external damping in the form K %% , where K

is a constant, and introduce the following dimensionless quantities:

4
(mm )L n
§=1> t "\/ BT’ m+m 8
(4.121)
v?nL2 2.4
i Al J_J____ KL
EI , E (atm, Yo > EL (mim )
then we obtain
4 5 2 ’ 2 2
745 2L 4522y, E—rg—gfa—+y'%1+-a—§=o (4.122)
€ dE AT g g T

To study the effect of small viscous damping forces and Coriolis forces,
we now let

,
§' = vé, v/ = 2vy, and J—ﬁ— = vB (4.123)

where v is a small parameter. The equation of motiomr, (4.122), and the boun-
dary conditions at £ = 0, 1, may then be written as

oy 2 3% | ? 3

2% 4+ x —§+_§+ [6—1—+zara—>'a—+m31j=o

3¢ 3 ae%ar gor T

y =-§-€= 0; at § =0 (4.124)
2 3

é—% = é—% =0; at § =1

E”  3g

We wish to study the stability of system (4.124) when v ig sufficiently small.

We let y = t(g)ein, and reduce (4.124) to the following boundary value
problem

4 2 4

4% L p2 98 _ W2y 4oaew |6 8Y 4+ 2pF S 42y | =

e Ay [0 3]

$ =% =0, atg=0 (4.125)
o= at § = 1
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where prime denotes differentiation with respect to E.

We then get § = ekg; A=A+ iva, and obtain

Otiva)? + F2Otva)? - o + dvw [6(Hva)* + 2BF (\Hiva) + 2y] = 0 (4.126)

which is the characteristic equation of system (4.125). Expanding (4.126) in

a series of powers of v, we are led to
[+ 2 - WP v {42 + 28%na + w(on*+ 26mn + 20} +
+ (i.v)2 {6a Ao+ F2a2 + w(46ak + ZBFa)I + (i\:)3 {4ka3 + 66ma212} +

+ (v {a“ + 4wa37\} + ({v) (@ah =0 (4.127)

Next, we equate terms of like powers in v, neglecting 0(v2) and higher,
and finally arrive at

2 2.2
2 B, et 2
=-3 *«/(2) tw
(4.128)
4 _
a8 +2Bn+2y; = s+ 1va
20202+ F2)

The solution to system (4.125) may now be written as ¥ (§) = }E Aje Jg, where
i=1

Aj; j=1,2,3,4, are constants which can be obtained from the boundary con-

ditions at £ = 0,1. That is, they must satisfy the following four linear,

homogeneous equations:

=1 (4.129)
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System (4.129) has non-trivial solutions if and only if the determinant
of the coefficients is identically zero, i.e., the frequency equation is of
the form (written out explicitly in [32])

A=A ('ij) =0 (4.130)

This relation may be rewritten with the aid of (4.128) as follows, after
expanding it in terms of powers of v, and neglecting 0(v2),

A= {F4+2w2+2w2 ch )\1 cos x3+l?2w sh )‘1 sin }\3}-

iv { (2—2& [(xll'- xal') + (7\33- 3x12x3) ch A, sin Ay +
\ b
1 12y

+

(311X3 -N ) sh A, cos X3] (2 )[(13 + 5X1 13) +

a2 2%

2.3 3. 2 4
6x1 )\3 ch )‘1 cos k3 - 411 k3 sh )\1 sin 13 + 2k1l3 sh }\1 sin 13

+

3.3

2. 4 4, 2
+ 211 13 sh Kl cos k3 + Kl AB ch xl sin-h3 - ll A3 ch *1 sin XBJ +

4
A b+ 2v 5 4 3.2
( 3 , 2)[(Al+5xlx3)+6xl Ay> ch A} cos Ay +
20, (21 247
+ 40203 shoa sin A, - 20,90, sh A, sin A, - 20 oA ch A, sin A, +
1 M3 1 3 123 1 3 1M 1 3

+

+ X12134 sh Xl cos X3 - kl A3 sh Al cos A3] } = 0 (4.131)

The first term in braces, in Eq. (4.131) is the frequency equation when
v = 0, and the second term, to the first order of approximation in v, indi-
cates the effect of small viscous damping forces and Coriolis forces. For
v = 0, we obtain the frequency equation of a purely elastic cantilevered beam
subjected to a compressive force which stays tangent to the axis at the free
end., The critical value of the load, in this case, is F 2 a 20.05, which was
first computed by Beck [33].

where

For non-zero but sufficiently small values of v and for small F, all the
roots of equation (4.131) are located to the left of the imaginary axis in
the complex iw plane., As we increase F, at least one of these roots approaches
the imaginary axis, and for a certain value of F, say Fd’ Eq. (4.131) yields

one purely imaginary root iw = iwc. I1f we now increase F beyond this critical
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value Fd’ one of the roots of (4.131) becomes complex with negative imaginary

part, and the system oscillates with an exponentially increasing amplitude.
Therefore, for given values of §, B and y, we shall seek critical values of
®w=w, (real), and F = Fd which identically satisfy (4.131). This is illus-

trated in Fig, 4.20 where, for § = 1, B = 1, and y = 0, real (Al) dnd imagi-
nary (-AQ) parts of A are plotted against the values of aF. Similar results
may be obtained for other values of §, B, and Y.

It may also be of interest to establish the destabilizing effect of
Coriolis forces, internal viscous damping forces, and external viscous damping
forces independently. 2

F
To this end, we let 6§ =y =0, B =1, and with Yg = —%— obtain, from Eq.
i
(4.131), Yq = 1.78. Similarly, for B = y =0 and 6 = 1, the critical load is
obtained to be Yg = 1.107, However, for B = 6 = 0 and vy = 1 we get Y4 = 2,035,

which 1s equal to the critical load of the system when no velocity-dependent
forces are present. That is, although sufficiently small Coriolis forces and
internal viscous damping forces have a destabilizing effect in this continuous
system, external viscous damping forces do not have the same effect,

The combined effect of velocity-dependent forces om the value of the cri-

F

tical parameter Y3 = —%- is shown in Figs. 4.21 and 4,22, In these figures
ul

the parameter Y4 is plotted against B/5 for various values of y. The horizon-

tal dashed line in these figures represents the critical value of Y4 when no

velocity-dependent forces exist and the cantilevered column is subjected to
a compressive follower force at the free end (Beck's problem [33]).

It is important to note that the stability curves shown in Figs. 4,21
and 4,22 have a finite discontinuity at v = 0, That is, although for v = 0
we have F2 = Fe2 = 20.05, for v = 0+, the critical value of F2 is, in general,

less tham 20.05.
It may also be of interest to explore the order of magnitude of v for
which the destabilizing effect of velocity-dependent forces still exists.

This may be accomplished by considering v large and seeking values of w and
F for which Eq. (4.130) is identically satisfied. We note that, in Eq. (4.130),

Kj; j = 1,2,3,4, are defined as functions of w and the other parameters of the
system through Eq. (4.126). In order to circumvent the difficulty of solving

polynomials with complex coefficients, we let § = y = 0 and put = i7 in Eqgs.
(4.126) and (4.130).
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The critical values of w and F may now be evaluated by a computer., The
computér may be instructed to obtain the roots of Eq. (4.126) for given para-
meters, and then calculate A, (Eq. (4.130)). These results are shown in Fig.

Fdz P-I
4,23, where Ya =3 is plotted against values of J o ® by a solid line.

n
The dashed line in this figure corresponds to the critical Y4 when the Galerkin
method with a two-term approximation is employed for the analysis as follows.

We consider a set of orthonmormal eigenfunctions, {cp (&)}, obtained by sol-
ving the following eigenvalue problem

4
$% 20 .0 (4.133)
dg"’ n % *

do
(Pn = EE-E =0 H at g = 0 (4.134)
dch d3

n n
= = Q at g =1 (4.135)

@ ag ;

We then let y = Z q, (-'r)cp (E), substitute it into the first equation in
n=1
(4.124), multiply both sides of this equation by &y = z ¢ (D6q_(7), and
m=1
integrate the result from zero to 1 with respect to € to obtain

2
d 9, 2
d 2 n tF bmn) Iy +
-
m=1
+v) (ouls  +28a +2ye ) q =0, n=12,...,0 (4.136)
m

where

0" cosh A S - cos A & - cm(sinh xmg ~ sin )\ng)

sinh )‘m - sin )\n
% * cosh Ay * cos A, (4.137)
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ol de

a = j _&g_m q)nd§ (4.137)
o
2
l- =-w
2

1 d%¢
b= —2B wd
mn J; d§2 @ g

1 l; form=n

6 ’f o @ df =
mn o °H® 0; form¥n

System (4.136) is a set of nonself-adjoint, linear, second order, homo-
geneous, ordinary differential equations which admit solutions of the form
q, = Amein. To obtain the critical values of Fz, we seek conditions under
which w becomes complex with negative imaginary part. System (4.136), how-
ever, consists of infinite number of equations each with infinite number of
terms. This, therefore, leads to a determinant which possesses an infinite
number of rows and columns.

It is quite common to let m,n = 1,2 in Eqs. (4.136) and reduce this sys-
tem to only two linear, homogeneous differemntial equations [8]. Hence, the
characteristic equation becomes a polynomial of degree four, which can easily

be solved. The values of Fz, which render at least one real root and all the
other roots complex with positive imaginary parts, are then taken to be ap-
proximations to the critical flutter loads.

For sufficiently small values of v, we may neglect terms associated with

vz in the characteristic equation, and using Routh-Hurwitz criteria, calculate
approximate values of the critical load F2 = Yanz. In Table I these approxi-
mate flutter loads are compared with the exact values obtained in the previous
section., From this table we observe that, for sufficilently small v, the
Galerkin method with a two-term approximation yields very accurate results,

We note also that, for v = 0, this approximate method gives F2 = 20.15 as com-
pared with the exact critical load, F2 = 20.05.

The above conclusion, however, does not imply that, for v finite, the ap-
proximate method should necessarily give sufficiently accurate results. 1In
fact, as is shown in Fig. 4.23 for § = y = 0, the critical flutter load ob-

tained by the approximate method (dashed line in Fig. 4.23) can be greatly in
error for relatively large values of the Coriolis forces. We note that, for

62



’
~/£%- gmaller than 0.25, the resulting error, when the Galerkin method with

a two-term approximation is used, is less than 5 percent and decreases as the
value of v decreases.

Among the other studies concermed with the destabilizing effects of
velocity-dependent forces (and in particular linear viscous damping), mention
should be made here of the papers by Leipholz [34] and Leonov and Zorii [35].
In Ref. [36] Bolotin and Zhinzher have used an expansion in fractional powers
of the damping parameters and have established the conditions under which 1li-
near viscous damping has no effect on the critical load for flutter. By con-
trast, Zorii [37] was interested in determining the maximum effect which
(small) linear viscous damping may have on the critical load.

4.6 Destabilizing Effects Due to Phenomena Other than Linear Viscosity

4,6,1 Thermoelastic and Hysteretic Damping

Not only linear viscous damping, but other types of dissipation mecha-
nisms are associated with destabilizing effects. In Ref, [38] a general for-
mulation of the stability analysis of elastic continuous systems subjected to
follower forces in the presence of thermomechanical coupling was presented and
applied to the problem of a cantilever under a tangential follower force at
the free end, A pronounced destabllizing effect of thermoelastic dissipation
was found to exist. Bilinear hysteretic damping was studied in Ref. [39] where
it was shown that it may have a destabilizing effect similar to linear viscous
damping, but that this effect disappears for a large class of hysteretic sys-
tems,.

4.6.2 Magnetic Damping in a Discrete System

Damping in a system can be realized also through the interaction of a
current carrying conductor with a magnetic field, Leibowitz and Ackerberg
[40] have found that the motion of an electrically conducting, perfectly
flexible wire placed in a transverse magnetic field will also be damped, but
in a manner somewhat weaker than the familiar viscous damping.

It is of interest to examine the effect of such magnetic damping on the
stability of equilibrium of some circulatory elastic systems, cf. Ref. [41],
where additional details are given. A simple system with two degrees of free-
dom is considered first, and a destabilization is found to be caused by the
magnetic field.

The system consists of two rigid weightless rods, each of length £, car-
rying concentrated masses m and 2m and acted upon by a follower force P (Fig.
4.24), The rods OA and AB constitute portions of electrical circuits having

resistances R1 and R2, respectively, and are constrained to undergo at most

plane motion. A uniform magnetic field o acts in a direction perpendicular
to the plane of possible motion.
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A displacement from the equilibrium configuration (wl =g = 0) will re-
sult in elastic restoring moments cg; and c(qh- qﬁ) at the hinges, and motion

of the system in the magnetic field will induce a potential difference between
any two points of the rods given by

vx @ - ds (4.138)

~

where the integration is taken over the conducting path joining the points and
v = v(s)is the velocity of the conductor., The potential difference will re-~

sult”"1if the generation of a current, §}3 according to

N} .%J“xx [30 . as (4.139)
[+]

and therefore a force per unit length of conductor given by

f=ex 68)0 (4.140)

~s

where E,is a unit vector in the direction of the current, The force distri-
bution (4.140) will of course be normal to the conductor and in a direction
which opposes the motion,

For the system being considered the distributions f1 and f2 are

17 % (4.141)
£, = r2(2€p1+ c‘pz)

where
T -0502 1,2/2Rj G =1,2) (4.142)

and the dots indicate differentiation with respect to time t. Taking as ge-
neralized coordinates the (small) angles 9 and @p» the kinetic emergy T and
the generalized forces Ql’ Q, are found to be
2,2 o o . 2
T = mf" (B, "+ 29,9, 9y )/2

Q = (B2-2c), - (PL-e)q, = (r+ 4r,)s° § /2 (4.143)

2,.. . .
Qp = epym9y) - T (29t §)) /2

These quantities are substituted into Lagrange's equations to obtain the
linear equations of motion:
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3me? G, + (e 4r e’ §/2 - (Ro-20)

+ me? &, + rzzz By + (BL-c)g, = 0

2 -
+ 14" /2 + cq, =0

The general solution of the system (4.144) is taken in the form

?; = z Aj e (G = 1,2)

and leads to the characteristic equation
4 3 2
9,0 *+ g0 + q,0 +q3w+q4 0
with the coefficients being given by
q, = 2m2.z4/c2

4, 2
(r1+ 3r2)mz /2¢

-]
-
n

(7-2P4/c + rlr2£2/4cm)£2m/c

£
[V
i

2
(r1+ 10r2- 3r2PZ/c)£ /2¢
=1
Routh-Hurwitz criteria lead to the critical load
A 2
F i 35/12 + |J.1/6p,2 + p,z(l + ot 3p,1p.2)4p.1
{ 2 i
- [5/12 + |.1.1/6p.2 - uz(l L 3|J.1p.2)/4p.1]

) 1/2
+ G+ 3 6wy}

where:

(4.144)

(4.145)

(4.146)

(4.147)

(4.148)
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F = Pg/c
(4.149)

By = rj‘/(‘*cm)” 2 (G = 1,2)

A point of interest regarding (4.148) is that although f-d > ®as py e

(i.e., the system can be made stable for arbitrarily large P), it remains
finite for By # 0 and Wy > P In fact

10/3 1f ,; #0 is finite

Rl (4.150)
] (10 +2)/3 if pp =2p,

A

In the case of small damping, i.e., p. << 1, F_. is written F_. and
i md md
becomes

Fqi°© 35/12 + u/f6 + 1l/4n

- [35/12 + w6 + 1602 - (hn + Un + 45)‘/6]1/ 2 (4.151)
where
n = pl/uz

We note that the greatest destabilizing effect is realized as u » Q. We further
note that Fmd is a monotone increasing function of .

Comparison with the case of internal viscous damping (Eq. 4.14) reveals

that Fd becomes unbounded as either B1 or.B2 becomes large, provided the other

parameter is non-zero., With magnetic damping, on the other hand, we have the
result (4.150), and therefore magnetic damping can be said to be weaker than
internal viscous damping, Furthermore, while it is possible to eliminate the
destabilizing effect with a viscous damping coefficient ratio of 11,07, the
critical load of the magnetically damped system is always smaller than Fez'

It may be of interest to compare the effects of magnetic damping with
those of linear external viscous damping. If in the double pendulum system
of Fig. 4.24 external damping forces act which are proportionmal to the velocity
with constants kl (along OA) and k2 (along AB), then the damping force distri-

butions are, for small angles, linear functions of distance along the rods (see
Fig. 4.25), 1In this case, the equations of motion are

3me? §) + (kp+ 3k,)5,2°/3 - (=209,

+ me? E{)z + k2¢zz3/2 + (PL-c)p, = 0 (a.clsst)
onc.
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2 ..

w? G+ k8772 - o + m? G, + k58703 + e, = 0 (4.153)

A development parallel to that which led to Eq. (4.148) yields the fol-
lowing expression for the critical load parameter:

Fo=(L- [1Z + am ) /N (4.154)

where
L = &(N+ 8TL) (- 21,) + 5T, (T + 3T,) (7 + 47, T,+ 31,%)
2 2
M = 2(7+ 81,07 + (N + 31,)
12 12 (4.155)
- (Tp* BT+ 3T,) (7 + 4T+ 31,7
N = 107,20+ 1)
and
m, = kJL2/(36cm)1/2 (4.156)

Examination of (4.154) establishes the following results:

Just as in the two previous cases, the system can be made stable for
arbitrarily large P by letting ﬂl be arbitrarily large, i.e., as T =

(0 # nz is finite) F - », The behavior of (4.154) as both ﬂl and ﬂz become

large resembles that of f rather than Fi « In this case

l6/5 if T, is finite

ev
- (4.157)
e (16 +20)/5 1if T = A1,

Thus the external viscous damping of the type being considered is also weaker
than the internal damping., It is noted, however, that when both damping pa-
rameters become unbounded Fmd <F__ for all x» > 4.
ev
Another feature common to all three types of damping is that the critical
load approaches the value 2 as pZ(Bz,ﬂz) approaches zero, and this result is
independent of pl(Bl,ﬂl). If, however, pl(Bl,ﬂl) approaches zero, both Fd and

i approach the value 1/3 (independently of oo B ) while the value of F

depends upon ﬂz
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lin f_ = 3(7 + 31122)/2 - 32/5 - { [3(7 +31,%/2 - 32/5}2

’I]l—)Oe
+ 274/5 - 48(7 + 31122)/5}1/2 (4.158)
and
1lim lim f =2
‘[]2-)0 N 0V
(4.159)
1i lim F
n;; o (T]l-a 0v) = 16/5
In the case of small damping, i.e., nj << 1, (4.154) becomes
Foo = [(35(u +3) + 4G+ 8)(n - 2)]/10(2n + 1)
~{ 700+ D /2020 + 1) + 200 + 8 (x - 2)/5(20 + 1):|2
1/2
- (8% + T8+ 62] /5(2n + 1)} / (4.160)
where
w = T,/1, (4.161)

This result differs markedly from the cases of internal viscous and magnetic
damping in that Fev does not depend upon x but is equal to the constant value

of 2, Therefore, the critical load parameter fev in the case of external vis-

cous damping differs from the value of 2 at most by terms which are of second
degree in nj'

4.6.3 Magnetic Damping in a Continuous System

As a second example of the effect of magnetic damping, an elastic conti-
nuous cantilever acted upon by a follower force P will be considered (cf. Ref.
[41]). According to the Bernoulli-Euler theory, the equation of motion which
describes the system when EI is constant is

34v %y a2y
EI——£+P—§+p—i—=v(x) (4.162)
ox ox ot
where EI is the flexural rigidity, p the lineal mass demsity, and w(x) is the

force per unit length acting in the y-direction.




The displacement v(x,t) must satisfy the boundary conditions

v(0,6) = (0,6) = 0

(4.163)
2 3
2% (4,0) =% (t,0) = 0
ox ox

Now, if the cantilever is a portion of an electrical circuit having re-
sistance R and if the system undergoes motion in the presence of a uniform
magnetic field ébo whose direction is normal to the x-y plane, then the in-

duced current will provide the following damping force distribution:

2
w(x) = - @R" _f‘ —g‘% dx (4.164)
[+

With the substitution of (4.164) into (4.162) and the introduction of the
dimensionless parameters

€ =x/8
7 = t(pa/ED) 12
(4.165)
F = PLZ/EI
v = a§0223/(pR2EI)1/2
the equation of motion and boundary conditions appear as
4 2 1 2
a—‘l—:+r~a—-‘2'+vf —g-!d§+a—§=o
€ dE T a7
XN =
v € 0Oat £E=0 (4.166)
2 3
%:%-oatgal
oF 13

In order to deduce stability criteria for this system, we consider modal
solutions of (4.166), i.,e., we set

v(e, ) = ¥(e)elT (4.167)
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Substitution of (4.167) into (4.166) results in the following boundary value
problem for ¥,

4 2
L r - Py =0 (4.168)
dg dg

= gl - -
¥ de 0 at £ =0

2 3
£ .dXw0 at g=1 (4.169)
dg dg

where the functional K has been defined according to
! 2
Qv f YdE = - QK (4.170)
]

We proceed now in a purely formal manner to solve (4.168) subject to
(4.169): The general solution of (4.168) is

¥ = A, sin mlg + A, cos wl§ + A3 sinh wzg + A, cosh wzg + K (4.171)

1 2 4

where

1/2

wlz = [(FZ- 402) + Fl/2

(4.172)

1/2

w,” = (2 ac®yM? - #1s2

Substitution of the solution (4.171) into the boundary conditions leads to a
system of four nonhomogeneous algebraic equations in the coefficients
Aj(j = 1,...,4) whose solution is found to be

2 3 .

Al - le w, (wlsin wlcosh w2+ w, cos w151nh mz)/A
A, = Kw, w 3(w Ww,sin w,sinh w,~- w 2 cos w, cosh w,~ w 2)/A

2 1 72 172 1 2 1 1 2 2

(4.173)
= Ky 3 w 2(w sin w,cosh w,+ w,cos w,sinh w,)/A

Ay 1 W (W 1 pt W, 1 wy
A, = - Kw 3 w, (W w,8in w,sinh w,+ w 2 cos w,cosh w,+ w 2)/A

4 1 227172 1. 2 2 1 2 1

where
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A= Wy w, [@14 + wha + zwlz w22 cos uy cosh w,
+ w,w, (w 2. w 2)sin w, 8inh ] (4.174)
1Wel¥ T W 1 ) .

The fact that the above solution is given in terms of the unknown func-
tional K(¥) is not a severe deficiency since primary interest in the present
context is focused on the nature of the complex frequencies (). As long as
the real part of () is negative, the rod will be asymptotically stable, i.e.,
will oscillate with exponentially decreasing amplitude. The characteristic
equation, by which the nature of (I may be examined, is obtained by requiring
that (4.171) satisfy (4.170) nontrivially, the Aj being given by (4.173).

This requirement leads to the following transcendental equation for QQ:
AQ = v [w w 4(l-cos w,)sinh w, - w 2 W, 3 sin w, cosh w
172 1 2 1 72 1 2

- w13 wzz cos w; sinh ®, + wl4 Wy sin wl(l-coshwz)

5 5
- sinh w, = W, sin wl] = vAz (4.175)

For small values of F and for positive damping (v > 0), all the roots of
(4.175) are located in the left half of the complex plane. As F is increased,
one of the roots approaches the imaginary axis and subsequently takes on a
positive real part. When this occurs then, by virtue of (4.167), oscillations
with exponentially increasing amplitude will result. The value of F beyond
which () has a positive real part will be designated as Fmd' As F » Fmd’ there

must be one imaginary root of (4.175), and since w;, w, are real whenever QQ

is imaginary, both sides of (4.175) must approach zero simultaneously.

The critical load is found numerically to be Fmd = 12,84, and the result

is independent of the magnitude of the magnetic damping (provided it is non-
zero). Comparing this value with the critical load in the absence of a mag-
netic field, FeL = 20,05, we find that the magnetic damping has a destabilizing

effect of 36 percent,

4.6.4 Retarded Follower Force

The system with two degrees of freedom discussed in Sect. 3.1 was sub-
jected in Ref. [42] to a retarded follower force. It is remarkable that a de-
stabilizing effect is associated also with retardation of a follower force with
constant time lag T, which was specified as

o(t) = ch(t-'r) (4.176)
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The linearized equations for small motions about the position of static equi-
libriuwm (p; = @, = 0) are

sme? G + me? §, + (2c-B)g, - cq, + PLO = 0
(4.177)

mLz Ei + me? ﬁh - ¢y + (c-PL)gp, + PLE =0
Solutions are sought again in the form (4.4) and lead to the frequency equa-
tion

3mele? + 2c - P4 me2e? - ¢ + pge”®T
=0 (4.178)
mle? - c me2e? + ¢ - Py + Pge®T

The presence of exponential terms suggests the application of Pontryagin's
stability criteria rather than those of Routh-Hurwitz., After a comprehensive
and rather elaborate analysis we arrive to the important result that a very
small (vanishing) time lag renders the system unstable for all positive (com-
pressive) values of the applied force P. Even under the most favorable time
lag the critical load was found to be F = Pg/c = 0.177, as compared to

F = 2,086 for the same system without any retardation rT.

In supplementing the analysis of Ref, [42], it may be remarked here that
for small time lag the stability investigation can be readily carried out em-
ploying the simpler Routh-Hurwitz criteria. 1If qb(t*T) is expanded into a
Taylor series about qh(t) (see Ref, [18]) and if only the first two terms are

retained, the equations of motion simplify to:

2 b 2 Lo .
3me” @ + me 9, + (2¢-P2)p; - cp, + PLy, - PlTg, = 0
(4.179)
2 . 2 . .
mwe” g +ml” @, - cp + (c-PL)y, + PLy, - Pirp, =0
and lead to the frequency equation of the form
4 3 2 _
with
P, = 2; P, = - FT;
(4.181)
P, =7 - 2F; Py = FT(F-3); P, =1



where
Qz = mzzwzlc; F = Pi/c;

(4.182)
T =1/Q=1"1/c/t /m

One of the Routh-Hurwitz conditions for asymptotic stability is that P, and
Py be of the same sign which results in the critical value of Fcr = 0, that

is for F < 0 the system is asymptotically stable and for F > 0 it is unstable,
verifying thus the result of Ref. [42]. The remaining Routh-Hurwitz condi-
tions do not supply more stringent requirements of F, It is noteworthy that
Fcr does not depend on the value of T. The conclusion is reached that in the

presence of even the slightest lag the system is unstable under a compressive
follower force. Further, the Taylor series expansion introduced above clearly
exhibits that small time lag 1s associated with the introduction of terms of
odd power in the frequency equation, having this in common with linear viscous
damping.

The destabilizing effect is in general introduced by any sufficiently
small, velocity-dependent forces, such as, for example, Coriolis forces. Some
types of such forces are realized by fluid jets; they have received conside-
rable attention and have been referred to as "jet damping," [43]. Others are
produced, e.g., by flow through pipes [44].

4.7 Uncertainties

The foregoing examples of various destabilizing effects amply illustrate
the necessity of a firmer grasp of certain aspects in the analysis of stability
problems as applied to systems subjected to follower forces, cf. [45]. What
is needed in particular is additional insight into the experimental determi-
nation of system parameters, cf. Sect. 8.2. If very small, even vanishing
quantities which induce a destabilizing effect have such a decisive influence
on the critical loads calculated analytically, how should these quantities be
measured with required accuracy? Further, how can one be sure that the "correct'
or "right"parameters have been included? It is even conceivable that (vanishing)
destabilizing effects exist which have never been thought of as yet, and which
have perhaps an even stronger influence on the stability boundaries of a given
system than any of those mentioned. Below some attempts are described to re-
medy this obviously unsatisfactory state of affairs,

If we are dealing with a man-made system, it would probably be desirable,
if possible, to make it well-behaved by means of a suitable choice of system
parameters and, in particular, by making it strongly asymptotically stable to
begin with, This is done sometimes in control systems where the "doubtful,”
"eritical" or "marginal' case of Liapunov (pure imaginary roots of the charac-
teristic equation) is interpreted as describing an inherently unstable system.
It is well known that if a system is asymptotically stable, small "destabi-
lizing" quantities will have but a small effect on the critical loads; this
effect will vanish with the vanishing of the "destabilizing'" quantity,
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In many man-made systems and in given natural systems the uncertainty can-
not be circumvented in this manner, It may then be suggested that the analysis
of stability be replaced (or supplemented) by an analysis of "patterns of be-
havior' of the disturbed system for various ranges of the controlling parameter
(force). Since we are interested here only in oscillatory response to a dis-
turbance, three types of behavior are qualitatively sketched in Fig. 4.26. Let
it be our aim to classify the response in just two categories. Depending upon
the specific performance requirements of the system at hand, it may be meaning-
ful to place the response in Figs. 4.26a and 4.26b into one category and the
response in Fig. 4.26c into the other. In the first category the disturbance
remains small during a certain interval of time, while growing fairly large in
the second category during the same interval.

As a measure of the rate of growth of the oscillations it is convenient to
introduce the largest real part o of the relevant root of the characteristic

equation, This is analogous to the introduction of the smallest negative part
as the "absolute stability margin" [18].

The stability analysis corresponding to a given o > 0 can be carried out
by introducing the transformation (Fig. 4.27)

=p +a (4.183)

into the characteristic equatiomn, e.g.,

4 3 2
poﬂ + plﬂ + pzﬂ + 930 + P, 0

which yields the modified characteristic equation for p

aop4 + a1p3 + azp2 +tazp ta, = 0 (4.184)
where
; a, =py + 4op; a, = py + 3ap; + Gozzp0 (4.185)
a, = pyt Zop,+ 3oz2p1+ 4oz3po; a, = p,t op,t azp2+ cr3P1+ 04P°

Applying the usual Routh-Hurwitz criteria to this modified equation, the cri-
tical force can be calculated. For the system of Fig. 4.1 the critical force
F, is to be calculated from

x ® aja,3, - aa,” - a)a, (4.186)
and is found to be
F, = (30 JBZ-AC>/A (4.187)
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where

A= 8a(d1-2ad°)

B =dd, + 20d,d, - 4od dy - a°d; (4.188)
C=ddyd, -dd? - d12d4

and
d_ =B, d; =P+ bop; dy = 7+ BB+ 3ap + ba’p,
d, = p, + 2w(7+B,B,) + 3a’p, + ba’p (4.189)
d4 =p, v opy + a2(7+3132) + cv3p1 + °’4Po

The results of the numerical calculations are displayed in Fig. 4.28. Thin
solid lines represent the critical force Fc as function of the growth para-

meter ¢« for given damping coefficients B The thin curves in Fig. 4.28 are

i
the same as those in Fig. 4.5, but they have been calculated in a different
manner and their interpretation is also entirely different.

The critical force as defined with the aid of the growth parameter o is
not entirely satisfactory because it does not separate the different types of
behavior illustrated in Fig. 4.26. We seek now to define what we may call a
"transition' force Ft below which o« (whether positive or negative) would be

relatively small and above which it would be relatively large. It appears to
be reasonable to define the transition force Ft as the force for which the

absolute value of the curvature of a given curve F(¢) = 0 attains a maximum.
Corresponding calculations have been carried out and the values of the tran-
sition force Ft for various values of the damping coefficients have been

joined by a thick solid line in Fig. 4.28. It is noted that for given damping
coefficients Bi there exists an associated transition force Ft which in turn

corresponds to a certain particular value of growth parameter o, . The expe-
rimental determination of system parameters associated with Ft appears to be
feasible. 1t should be also observed that as damping decreases Ft approaches

Fe, while Ft approaches F. as damping increases. The relationship between

d
critical and transition forces is thus clarified.

It is rather evident that the two types of system behavior which are
separated by Ft can be less or more different and thus it may be appropriate

to introduce the notion of degree of separation o associated with any particu-
lar value of Ft. This additional characteristic separating '"patterns of
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behavior" could be made to depend on the magnitudes of curvature and slope of
the function F(x) at o

t

The parameter « can be employed yet for another, purely mathematical
purpose. For small o, Bl and B2 Eq. (4.186) may be written in the form

[a2+ a(Bl+632)/4](F-Fe1) (F—Fez) - (Bl+BZ) (Bl+6B2) (F-Fd) =0 (4.190)

Here Fe1 and Fe2 are the critical loads obtained in the absence of damping,

while Fd ig the critical load for vanishing damping. It is observed that either

critical load may be obtained by a limiting process in Eq. (4.190), which
gives either o, F, B1 or B2 in terms of the remaining three quantities. If

the growth parameter o = 0, it is seen that F = Fd, which depends only on
g ='BIIB2 but not on B1 and 32 itself. By contrast, if the damping coeffi-
cients are made to vanish first, themn F - Fe1 or F - FeZ’ regardless of the

value of the (small) value of o. Thus the introduction of the growth para-
meter o permits to approach the critical load for no damping Fe1 even in the

presence of vanishing damping, removing mathematically any destabilizing
effects.
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CHAPTER V

CONTINUOUS SYSTEMS

5.1 Introduction

In the preceding chapter one aspect of problems of continua was not ela-
borated upon, namely, that stability must necessarily be defined with respect
to a metric (sometimes implied) which measures distance in an infinite-
dimensional space. One has to define what is meant by "nearness" to the
equilibrium configuration whose stability is being examined., This metric
may be postulated in various suitable forms, depending upon the physical as-
pects and the requirements of the specific problem at hand. The equations of
the boundary value problem of a continuum, together with an explicitly defined
metric p form a functional metric space whose fundamental properties depend
strongly on p and thus lead to differemt results of a stability analysis.

With reference to a conservative system, Koiter [46,47] has pointed out
that a conventional generalization of Ligpunov's definition of stability,
which requires that the displacements and the velocities remain arbitrarily
small at each point and for all positive time, provided the initial disturb-
ances are sufficiently small, can hardly be considered satisfactory. A modi-
fied concept of stability was suggested which reduces to Liapunov's definition
for the case of a discrete system.

In this Chapter, following the development of Ref. [48], a sufficient
condition for the stability of a linearly viscoelastic continuum subjected to
surface tractions which follow partially the deformation of the solid is estab-
lished with respect to an average metric.

5.2 Definitions of Stability

We consider a finite isotropic, homogeneous, linearly viscoelastic solid,
bounded by a regular surface S, contained in a volume V. At the time t = 0,

the solid is in a state of initial stress cij: i,j = 1,2,3, caused by a sys-

tem of partial follower surface tractions P;» applied at the boundary S. We

shall refer to the state of initial stress of the solid as unperturbed (equi-
librium) state and study its possible motions with reference to this state.
Furthermore, we shall assume that the quantities describing the perturbed state
are small (these quantities will, subsequently, be indicated by a bar) so that
all terms of order higher than the second may be neglected. The equations of
motion of the perturbed solid, referred to a fixed orthogonal Cartesian coordi-
nate system, are [8]

°15,3 T OO0, T T 0 IR Te oygny oy TRy

i,k = 1,2,3

on S, ; (5.1
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where m is the mass density, xj are the coordinates, u, the displacement com-

i
ponents measured from the unperturbed state, nj the components of the unit

normal to S, Ei the perturbations of the applied surface tractions. In these

equations and in the sequel the repeated indices are summed over the range of
their definition. A comma followed by indices k, j indicates differentiation
with respect to xj, X and dots denote derivatives with respect to time. We

shall assume here that

>

p. =a(x)pu. ., on S 5.2

Py ( )pj 1,1 (5.2)
-

where a(x) = a(xl,xz,x3) is a parameter which serves to describe the manner

in which the surface tractions follow the deformation. If o = 0 the system
is conservative and for o = 1 we have the case of follower force introduced
in [8]. The constitutive equations shall be taken in the form

N T
955 = Ciske®e, 07 Ciike)B(e, k)¢ Bk,0) T2 (k0K

Ciike = A, . (5.3)

0 + 2065, 8

k jg

' — ' '
Cijkg = 815% * 20 05155,

where éij is the Kronecker delta, A and p are Lamé constants, and A/ and b’

are viscous constants corresponding to Lamé constants.

A general solution to the nonself-adjoint mixed initial and boundary
value problem (5.1) cannot, in general, be easily obtained. Therefore, in
order to study the stability of this system, we have to resort to some other
means and, consequently, we shall not expect to gain as much information con-
cerning stability as we would if we were to construct and evaluate a general
solution of the system, As we shall see, this is by no means a shortcoming.
A strong stablility criterion, that may be imposed on the system and which
could be applied if we were to solve system (5,1) completely, would be of
doubtful interest.

In this conmnection, we shall consider a certain functional (which, in
effect, expresses the energy of the system) and explore the stability of
(5.1) in some appropriate average sense., Furthermore, we shall show that
the usual Galerkin method, which reduces the system of partial differential
equations (5.1) to a set of ordinary differential equations, yields the same
results as those obtained by a study of the functional mentioned, provided
all the series expansions employed converge in an average sense.

To this end, we consider a complete set of normalized eigenvectors, ob-
tained by solving the homogeneous, self-adjoint system deduced from (5.1) by
setting cij = C{jkz =P " 0, which has the same geometrical boundary
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conditions as the original problem. Let this set of orthonormal eigenvectors
->
be denoted by {¢in(x)}; i=1,2,3, n=1,2,,..,o. We shall reduce our origi-

nal system of partial to a system of ordinary differential equations by ex-
panding'iii and its derivatives in terms of these eigenvectors, without any

attempt to resolve the question of convergence. However, some comparison
between the results obtained by applying this method to some simple problems
and the exact solutions [8] certainly suggests that convergence may be as-
sumed.* In our problem, we shall therefore state that if convergence exists
(in an average sense at least) then the two methods yield identical results.

Let us now comsider the fundamental question concerning stability of a
solid, and review first the definitions of stability for a discrete system,
mentioned in the Introduction.

We examine a system with r degrees of freedom described by generalized
coordinates q, and generalized velocities ﬁn; n=1,2,...,r. For a holonomic

and autonomous system, we write the equations of motion as

in = fn(zl,zz...,zzr); n=1,2,...,2r (5.4)
where

zngqn

Z o =958 n=12,...,r

->
and fn(z) are bounded, continuous, real functions vanishing for z = 0. We

assume f, satisfy all the conditions required for the existence of a single-
valued solution for t > 0 in the region of the definition of z . Furthermore

we represent the state of this dynamic system by a point in a 2r-dimensional

Euclidean space, E2r’ with coordinates zsn= 1,2,...,2r, The equilibrium
state of the system at the originm is said to be stable if for any ¢ > 0 we
2r
can find a 6 > 0 depending on ¢ only such that when E: zn2 <§§ att =0,
2r n=1
we have 2: zn2 < ¢ for all t > 0. In the opposite case z, = 0 is called
n=1
unstable [14], Furthermore, z =0 is called asymptotically stable if it is
2r
stable and 1lim E:z 2 = 0,
to o n
n=1

* The paradox in the problem of flutter of a membrane, as was shown in
{81, is not related to the fact that the system is nonself-adjoint.
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The above definitions of stability are due to Liapunov [11,14]. He also
supplied the proofs of necessity and sufficiency, employing the notion of dis-
tance in the finite-dimensional Euclidean space EZr'

For systems with an infinite number of degrees of freedom (continuous
systems) the notion of distance in an infinite dimensional space needs to be
introduced, if one wishes to extend Liapunov'’s concepts to such systems., In
this case, we have to be concerned with functionals rather than functions and
must explicitly define a measure (metric p) of distance of two states of the
system and then study the stability of the system with respect to this metric p.
The metric p may be selected in any suitable manner (provided it satisfies three
fundamental conditions [49] so as to fulfill some physical requirements of the
problem at hand. It may be desirable, for example, to limit the displacements
and the velocities at each point of the solid, in which case we define

P = uyuy + u,u, everywhere in V and on S

In some other cases, we may wish to restrict the strains as well as the dis-
placements and the velocitie.: at each point of the solid, such that

Pp =y Fuwyuy tuy i

[

everywhere in V and omn S

For most practical problems, however, it is usually preferable to define
p in an average sense; for example,

P3 = ‘[v [“i“i tuy Y,y T “1“1] dv

We now state the definition of the stability of the initial state of a
solid with respect to an explicitly defined metric p, by appropriately ex-
tending the corresponding definition for a finite system.

The initial state of the continuous solid is said to be stable if for a
given ¢ > 0 we can find a § > 0 depending on ¢ only such that when p < § at
t = 0 we have p < ¢ for all t >0, 1In the opposite case, the initial state
is called unstable, Furthermore, the unperturbed state is called asymptoti-

cally stable if it is stable and 1im p = 0, The sufficiency theorem of stabi-
t> o
lity may now be stated as follows:

Theorem., In order that the unperturbed state of system (5.1) be stable
with respect to a metric p, it is sufficient that there exists, by virtue of
the requirements of the boundary value problem (5.1), a finite, nonincreasing
functional which is identically equal to zero for p = 0 and admits an infini-
tely small upper bound with respect to the metric p,

This theorem is an appropriate version of the theorem of stability given
by Movchan [50]. 1In the sequel we shall use this theorem to establish a suf-
ficiency criterion for the stability of system (5.1), But let us first dis-
cuss some aspects of the definition of stability,
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It is seen that the stability criteria are highly dependent upon the spe-
cification of the metric p. We may not, therefore, expect to apply a criterion
obtained, say, for Py to Py and get like results. The problem which was treated

by Shield and Green [51] may exemplify this very point. An isotropic, homoge-
neous, linearly elastic sphere was perturbed by radially symmetric applied in-
finitesimal disturbances at t = 0 and it was shown that the strain at the center
of the sphere can become finite for some t > 0. Let us show that although this
system is unstable with respect to the metric P it is stable with respect to

Py To this end consider the following functional
mo= 3 ] @b e 5w ) av ]
17200, ™% T P, e Y

whose time derivative is zero by virtue of the equation of motion, and which

admits an infinitesimal upper bound with respect to the metric p,. From the
3

inequalities [52]

Cl Iv uiuidv < Iv ui,jui,jdv

C, Iv Uy g%, dv s Jv Ciike®1, %, 097

which are valid for all admissible motions of the solid,with C1 and 02 being

fixed positive constants independent of Gi’ we immediately construct the in-
equality

Hl 2 Kp3 for all t 2 0

i We let H, < Ke
and obtain Pq < ¢ at t = 0. But H, 1s a nonincreasing function of time.

1
Therefore Ke is an upper bound of H. for all t 2 0, which implies

where K is also a fixed positive number not dependent on u

1

P < e for all t =0

In [51], the initial disturbances were taken to be

u=2=8.9, ;-2 [t £'(c) - £ (r)] at t =0

where r measures distances from the center of the sphere, c =,Lﬁ£_22 , and
f(r) is given by

f(x) =0 0<rs<a
1 4
f(r) = 33 (r-a) (r-a-2¢a) a<r<a+ 2ea
€ a
£(x) =0 a+ 2¢asr
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A simple calculation shows that Py = O(e) at t = 0, Furthermore, at t = a/c

we have, for 0 < r < 2¢a,

r2(2ea-r)3(7r-6ca)

u = L
55
¢ a

which immediately yields pgy = O0(e) at t = a/c, while the strain at the center
of the sphere at this instant is finite:

g - 3 -

r=ea r=e¢a

In this example, one is able to obtain an exact solution to the differen-
tial equations of the boundary value problem. Therefore, one is in the position
of requiring as strong a stability criterion as one pleases. We see that the
system is not stable with respect to Pys although it is stable with respect

to Pge The important point to note in this connection is that the stability
with respect to the metric Py could have been deduced without possessing an

explicit solution of the problem.

In most practical problems, the system may well be stable for all practi-
cal purposes, while it may not satisfy the pointwise stability conditions with
respect to the metrics Py and Pye In those cases there may exist a finite

number of points in V where an infinitesimal perturbation at t = 0 may cause
finite, say, strains at these points for some t > 0. If the collection of
these points forms a set with measure zero, then the stability may exist with
respect to the metric Pae

The metric py seems to be more appealing also from a purely mathematical

point of view. In this regard, let us note that the series expansion of a
plecewise continuous function in a finite domain is an approximation in a mean
square sense and not a pointwise representation. The following discussion will,
therefore, be devoted to the stability of system (5.1) with respect to the
metric CEY

5.3 Analysis of Stability

We consider a functional H given by
n-l{_l‘[mr}ﬁ +c,. 5, & ,+ (l-)o.5, .5, .]dv
2 v i7i 1ike 1,3 k,¢ jkiik 1,]

’ 2 - - =
+2 ] .[v[Cijkzui,juk,L - o @By ) G, dv de} 5.5)

and note that, from the requirements of the boundary value problem (5.1), H is



a continuous functional which vanishes identically at the initial unperturbed
state of the solid, P = 0, The total time derivative of H is

I [mn u + Cijkz 1 juk,z + (l-a)ojkii,gai,j

ijkf‘i,f.’k,z aC A GO RN 6] dv (5.6)
But we have
J.v[cijkzuk,z * Cy g Ui 0] Uy, 50V < Is °1j“j“1ds Jv %44, 1519V

and

jv {Q-or0,@; (3 4 - op iy ) G} v - jv[ojkai i

+ Jstcjkui,knj - apkui’k] u,ds

where in the last reduction we have used the fact that for the unperturbed
state we have

aij,j =0 in V and cjknk = p:l on S

Equation (5.5) now becomes

I { A (cjkﬁi,k),j} dv +I By 40y + 958 10y

j u, j] T dS G.7)

which is identically equal to zero by virtue of Eqs. (5.1) for all actual per-
turbed motions of the solid. Moreover, if H is a positive definite functional
then it admits an infinitely small upper bound with respect to Py To show

this we let ‘ui| < /e, |u | < /e and |u | < /¢ at t = 0%, and obtain
Py < 15V¢ at t =0
Then, as H > 0, we have

H<Ke=08 at t =20

* The initial disturbances may also admit singularities at finite number
of isolated points in V such that Py = 0(e), and H = 0(e) at t = 0,
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where K is a positive constant. But § is an upper bound of H for all t > 0,
as H 18 a nonincreasing function of time., Therefore, if H is a positive de-
finite functional, then all the requirements of the sufficiency theorem are
fulfilled and we have the following theorem:

Theorem. For a linearly viscoelastic solid subjected to a set of par-
tial follower forces to be stable with respect to the metric p,, it is suf-
ficient that the functional H given by Eq. (5.5) be a positive definite quan-
tity for admissible perturbed motions of the solid about the state of initial
stress.

Let us note that the requirement of H being a positive definite functi-
onal may imply a stronger stability condition than is given by Pqe This

touches then upon the question of the necessary conditions which will not be
dealt with here.

From the above discussion we may conclude that the commonly used energy
methods yield stability criteria with respect to an average metric P3e There-

fore we may not, by any means, expect to retrieve any more information than is
retained after this averaging process. This conclusion is also valid for most
approximate methods such as the Ritz, the Galerkin, and other methods, where
we use some averaging processes to reduce the system of partial to a set of
ordinary differential equations. We shall explore this point further in the
sequel, but let us make first another remark regarding system (5.1) and func-

pory
tional H, We let solution of (5.1) be of a form Ei = ¢i(x)ept and obtain from
(5.5)

H = 2Pt {%Jvtpzmti*i oty i e (0ol ¥y 4] dv

# [ TPt e, e~ gty ) 8] o ) ©-8)

If we substitute u, = #iept into Eqs. (5.1), we obtain an eigenvalue problem

i
with eigenvalues p. From Eq. (5.8) we may conclude that, for H to be a non-
increasing function of time, p must have a nonpositive real part.

We now reduce Eqs. (5.1) to a set of ordinary differential equations. We

agsume that Ei and its derivatives can be expanded in terms of the complete

-—p
get of eigenvectors X = 1,2,3, n = 1,2,...,%, such that
f el {cpin()}i 1,2,3 1,2 h th

|

v

dv < ¢, j
1 v

N

ERR2 .2

uu, - z:¢in¢inqn (£)| dv < <, (5.9)
n=1 cont.

N
ok -Z 2(0)
i1 cPin¢inqn
n=1
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N N
Jv IT‘i,jT‘k,z'z Z%n,j%,zqn(t)qm(") dv < ¢4
n=1l m=1
N N
.r ;K% T Z Z%n,jkq’imqn(t)‘im(t)l dv < ¢, .9
v n=1 m=1
and
L N N
'[V T'li,j-‘;k,!,-z chin,jcle,!,an(t)am(t)l dv < &5 1,3,k2 = 1,2,3

n=1 m=1

for some N > M, where M is a large positive number depending on € i=1,2,...,5
in the above inequalities and ¢; may be made as small as we please by selec-

ting M sufficiently large., For such an M, Eq. (5.7) reduces to

N N N
. . 2 .
z { Iy + z cmnqn + “n z (amn+ l."mn)qn } 9y = 0
m=1 n=1

n=1
where
oL ] ]
bmn = . 2 [ Iv(l o:)cjkcpin’jcpim’kdv J‘vajk(win,j),kmimdv] (5.10)
m
and
= ’
Can fv €1 ke%n, £%im, 34V

In obtaining (5.10), in addition to the Gauss theorem we have also utilized
the fact that {g, } are solutioms to

2 R
cijk!,cpkn,l,j.l- o Py, = 0 inV, Cijkl,cpkn,znj 0 on S, ‘[v mcpin(pimdv 6mn
For &m ;m=1,2,,..,F not identically zero, Eqs. (5.10) yield
N

N
2
I + cmnqn + ' z (amn+ bmn)qn 0, m=12...,N (.11
n=1 n=1

which is a system of nomself-adjoint, ordinary differential equations.
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Similarly, H reduces to

N N N
Be3 ) {8 wlel]+ ) atate? 2 [ ) [Candulat Pantat] @€ }
w=l ol n=1

where

%un T .[v(l-d)cjkq’in, 1%im, k97> bpp = - .[v"jk("“’in,j),k%md"
and

b = ;1—2 (a_+ _bmn) (5.12)

m

For a positive definite H in a region P3 <R; R>0, we can find an M

such that H is also a positive definite quantity within a ringli <P <'§,
g 1 3
where Py is defined by

N
- 2 . 2
Pq z (qn +qn)
n=1

in a 2 N-dimensional Euclidean space. Moreover, R, is dependent only upon

1
< in inequalities (5.9) and may be made as small as we please by choosing M

large enough. From the stability theorem we therefore conclude that, for
system (5.1) to be stable with respect to the metric P3s it is sufficient

that H be a positive definite quantity. But H vanishes for 33 = 0 and dH/dt

is identically equal to zero along any path satisfying equations (5.11).

Therefore, by Liapunov's stability theorem [14], system (5.11) is stable

when H is a positive definite quantity, and likewise when H is a positive
definite quantity.

The study of stability of the system of linear homogeneous ordinary dif-
ferential equations (5.10) is, however, a classical mathematical problem.
For the stability of (5.11), it is necessary and sufficient that the roots
of the characteristic equation of (5.11) have nonpositive real parts. How-
ever, the study of the functional H, which in fact is a statement of the
energy of the system, can provide us with a better insight into the physical
behavior of the system. Divergent motion may occur if, for a virtual (static)
displacement of the system, the work of the applied forces equals the change
in the strain emergy of the system, namely,

1 P — - - - —_
Py . + - U, . - . . =
5 J; 2 [cijkzul,juk,L (1 a)aJkul’kui’J] dv J; oJk(a ui’J)’kGuidv 0



or equivalently
s‘[l[c W, T , 40,1, .8 ]dv-J' 3, .86,dS = 0 (5.13)
v 2 Saakett, %0 T Ok, s TPiM,50M :

where & is the variational symbol.

Let us now assume that o is function of a real parameter y; -« < y < +wo,
in addition to X5 Xy, and Xy @ = d(xl,xz,xB; Y¥). Moreover, we consider a

-—p
proportional loading Bpj(x), where B is a finite, dimensionless, real number;

0 < f<wo In this way, the plane of § - v 1is divided into regions of stabi-
lity and instability by equation (5.13). The effect of the linear viscosity
(Eq. 5.3), in this case, is to make the stability regions a closed set (ex-
cept, possibly, for a set with measure zero; a finite number of isolated
points in this plane).

The limiting condition for the flutter of system (5.1), by contrast, is
obtained when

2n
w

- r ’ - - _ - .
H3 Jo JV [Cijkxui,j“k,t - ojk(a"i,j),k“i] dv dt = 0

where @ 18 the frequency of steady state oscillation of the solid about its
unperturbed state. The motion of the solid decays if H3 > 0 and amplifies

if H3 < 0.

For continuous systems with slight damping, Nemat-Nasser [ 53] proved
that the flutter load parameter of the undamped system is an upper bound for
that of the system with slight damping. He also established the necessary
and sufficient condition for stability with respect to flutter and suffici-
ency conditions for stability with respect to divergence and flutter. Based
on energy considerations he further suggested in [53] an approximate method
of stability analysis which reduces to the usual energy criterion for the
case of conservative loading. A complex treatment of a class of one-dimen-
sional continuous systems was suggested in [54].

For a further discussion of stability of continuous (not necessarily
nonconservative) systems, reference should be made to the recent work by
Hsu [55] and by Knops and Wilkes [56].
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CHAPTIER VI

METHODS OF ANALYSIS

6.1 Discrete Systems

6.1.1 Introduction

The mathematical analysis of stability of discrete systems is most readily
carried out using Routh-Hurwitz criteria to determine the nature of eigenvalues,
a subject amply explored in the literature, see, e.g., L18]. As an alternative,
one could think of applying Liapunov's direct method, [14], with suitable modi-
fications. In conservative systems this method is tantamount to the well-known
energy method, but in systems with follower forces suitable generalizations are
required. Such a generalization has been presented by Walker [57]. The ap-
proach has the advantage, over an eigenvalue analysis, that the manner, in which
various parameter changes influence stability, becomes much more visible. Below
the idea and examples presented in Ref. [57] are reproduced.

Let us examine first a conservative discrete dynamic system in vector form
Mg +Cq+Kqg=0 (6.1)

where q i3 an n-vector of digsplacement, M, C, K are n X n matrices, and M is
positive definite and symmetric. Most early work is based on energy conside-
rations, and considers the so-called 'conservative' problem (K symmetric and
positive definite) with 'dissipation' forces (C symmetric and positive semi-
definite) and/or "gyroscopic" forces (C skew symmetric) [58]. For this problem,
the total energy

q My +

N =
N

E = 9 Kq (6.2)

is a positive-definite function, having the time derivative

E=-4% cq (6.3)
Depending on whether C is definite, semidefinite, or zero, various exact
statements can be made concerning stability or asymptotic stability of the
equilibrium q = q = 0 [58].

~

6.1.2 A 'Generalized Energy' Function

The generalization in Ref. [57] starts by defining n-vectors q =9

9 = g and placing the system in the form -~ ~
q =9

~ =2 (6.4)

. -1 -1
a5 = -M ‘1 - M ng
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while assuming M = MT, det |M| # 0, det |K| # 0. These assumptions are main-
tained throughout,

Consider now the general quadratic form

T T T .
V=24," Fg +q, Gg, +q," Hy (6.5)

where F, G, H, are n X n matrices, F = FT, G = GT. Taking the time derivative

according to the equations of state, we have

. _ T T,-1 T -1
V=-gq KM Hy -gq, \:ZGM c H]gz (6.6)

T -1 T -1
+ 9 EZF - 2GM K -CM H} 9

The above function and its derivative are sufficiently general for a full
attack on the stability problem by the methods of Liapunov, but are also too
complicated to be of much practical value. It seems desirable to sacrifice
some generality if a significant reduction in complexity would result. Keeping
in mind that when the energy method works, it works very easily, suppose we now
restrict the function V to have two of the properties which the energy function,
when it is meaningful, normally has; namely: (1) If C = 0, then V= 0, (2) If
C # 0, then V depends only upon 94 These conditions imply

F=6M K= [Gu'l K]T
(6.7)
H=0
Thus, the restricted function is
_ T -1 T
V= 9 GM K 9 + q, ng (6.8)
where G and GM-lK are symmetric, and its derivative is
o T -1
V=- 222 GM C ) (6.9)

We note that GM-lc need not be symmetric, and that V= 0 if GM-IC is skew-

symmetric. We also note that for symmetric K we may choose G = M and produce
the energy function, although we need not do so. Since the symmetry require-

ments on G and GMflK result in (nz-n) linear equations in the n2 elements of
G, there are normally n independent matrices G (producing n independent func-
tions V) which satisfy these requirements,

We are now in a position to draw some conclusions:
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Theorem 1. If there exists a matrix G such that GH-IC is positive de-

finite, while G and GH-IK are symmetric and positive definite, the equilibrium
is asymptotically stable.

Theorem 2. If there exists a matrix G such that GM™ 'C is positive semi-

definite, while G and GH-IK are symmetric and positive definite, the equili-
brium is stable.

Theorem 3. If there exists a matrix G such that GH-IC is positive de-
finite, while G and GH-IK are symmetric but not both positive semidefinite,*
the equilibrium is unstable,

1

Theorem 4. If there exists a matrix G such that GM C is skew-symmetric,**

while G and GH-IK are symmetric and definite of the same sign, the equilibrium
is stable but not asymptotically stable.

Theorem 5. If there exists a matrix G such that GH-IC is skew-symmetric,

while G and GH-IK are symmetric, the function V = ﬂlT GH-IK <P} + ﬂQT Gﬂa is an
integral.

Although the conditions of Theorems l-4 are only sufficient, not neces-
sary, it seems that in the great majority of problems ome of the first three
theorems should prove applicable. A definiteness requirement on an n x n
matrix results in n inequalities and, as previously noted, symmetry require-

ments on G and GM~1K result in only (nz-n) equations in the n2 elements of G.
Theorems 4 and 5 are less generally applicable, particularly when C # 0, since

their satisfaction may involve up to % (3n2-n) equations and, for Theorem 4,

up to 2n inequalities. However, it may be noted that every result previously
obtained by the energy method [ 58](K is then necessarily symmetric) is included
here by letting G = M,

There are normally n independent matrices G which satisfy the symmetry re~

quirements on G and GH-lK. If the problem is specified in terms of parameters

and is being attacked analytically, there is often an apparent choice for the
n arbitrary elements of G which simplify the definiteness conditions on GH-lc
or, if GH-lc is skew-symmetric, the definiteness conditions on G and GM-IK.
When M is diagonal, a usable result is sometimes found by setting diag [G] =
diag [M], thus specifying n elements of G a priori. This choice is one which
produces G = M in the absence of follower forces, and this may be desirable
since the energy function usually works well in such problems.

*
A definite matrix is also semidefinite, as is the zero matrix.

dok .
The zero matrix is also skew-symmetric.

91



Two examples involving follower forces are presented to illustrate the
use of these procedures.

Example 1. Comsider the system

Hi'i' Ci'i' Ki =0 (6.10)
where
m, O 0 o0 k, -k
Mm=| ! , C= , k= ' 3 (6.11)
0 m, 0 0 k3 k2
If we choose diag [G] = diag [M], G = GT,
m g
G = (6.12)
g o,
and
_ k.+k,g/m -k tk.g/m
oM 1K - 1 73%°72 3 72572 (6.13)
klg/m1+k3 -k3g/m1+k2

For GM-lK to be symmetric, we find

- k3 + k, g/m2 =k, g/m1 + k3 (6.14)

which implies

2k, m.m,
=312 (6.15)

g = -
kZml klm2
Since GM-IC = 0, we will utilize Theorem 4, Conditions for positive

definiteness of G and GM K are, assuming m; >0, m, >0,

() mm, - g% >0 (6.16)

(b) myk; +mk, >0 (6.17)
2 2

(e)  (kg"+ kjky) (mym,- g°) >0 (6.18)
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By Theorem 4 these are sufficient conditions for stability, but they also hap-
pen to be the necessary and sufficient conditions for distinct purely imaginary
eigenvalues.

A result which is immediately apparent from this analysis is that propor-
tional damping always results in asymptotic stability when the preceding con-
ditions are satisfied. That is, if

C=oM+BK(cf 20, o+ B >0) (6.19)

then

1 1

GM C=aoG +8GM K (6.20)

and @M lc is positive definite since G and aM” Ik are positive definite.
Theorem 1 thus implies asymptotic stability.

This is not to imply that C need be proportional, or even dissipative,
for an answer to be obtained. Consider the general matrix

C= (6.21)

for which, using the previous G, we have

- e+ c,g/m ¢, + c,g/m
ale = | C1 ©38/72 47 C28/m (6.22)
cgt cyg/m) eyt e e/m)

Assuming conditions (a), (b), (c), are satisfied, Theorem 1 implies asympto-
tic stability provided

(d) ¢ m, + ¢, 8 >0 (6.23)

(e) (clcz- c3c4) . (mlmz- gz) >0 (6.24)

If (d) and (e) are satisfied, but one or more of (a), (b), (c), is
strictly violated, Theorem 3 implies instability., Stability is assured by
Theorem 2 when (a), (b), (c) are satisfied while (d) and (e) are weakly sa-
tisfied.

For certain values of the parameters, it is clear that a definitive re-
sult is not given by the preceding amnalysis. However, all of the preceding
was based. on one specific choice for diag [G]. Other choices can be made and
results obtained which are applicable under different parameter restrictions.

It may be noted in general that for problems having C = 0, Theorem 4 is
the only one of the first four theorems having a possibility of success, and
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it can be satisfied only for systems which would be asymptotically stable with
the addition of proportional damping.

Example 2. Let us consider the problem discussed in Sect. 3.1 which should
gserve as a fair demonstration of the operation of the proposed method, The
equations of motion are

Mq + ci+ Kg = 0 (6.25)
where
, |31 00 2-y oy-1
M=m s, C= , K=k (6.26)
1 1 00 -1 1-(l-)v

where mLz >0, k>0, and ¥y = P4£/k. The parameters of interest are Yy and «,
which relate to the magnitude and direction of the nonconservative load.

Choosing a general symmetric G,

G = (6.27)

we find that the symmetry of GM_1K implies

g (1 - 2(-00v] = oy (v-5) - o] (¥v-2) (6.28)

Since GM-1C = 0, we hope to apply Theorem 4.

Looking ahead to possible algebraic difficulties in the definiteness con-

ditions on G and GM-IK, let us try the simplest choice for (al, az), i.e., one
which produces g = 0:

o, =5 - ¥
1 (6.29)
a2 =2 -¥v
Thus,
5-y 0
G = (6.30)
0 2-\(_J
and _
2 (5-v) (3-v) - (5-v) (2-Y)
oM Xk = kat (6.31)
-(5-v) (2-v) (2-v) [4- (3-2a)v]
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We see that G is positive definite for Y < 2, Assuming this restriction, we
find that GHflx is positive definite provided

1+ (l-a) (Yz- ) >0 (6.32)

The bifurcation plot in the (y,x) plane is gshown in Fig. 6.1. We have just
obtained the shaded region below y = 2 as a region of stability by Theorem 4.
However, eigenvalue analysis [22] shows the entire shaded region to be the
exact region of stability. Since our theorems are only sufficient, not neces-
sary, it may be worth-while to try another choice for G. We see that the pre-
vious choice for G fails at y = 2 because a, = 2 - y is required to be posi-

tive, a necessary condition for positive definiteness of our previous G. Let
us simply reverse our definition of @, and choose

o = 5 -%
(6.33)
o, = Yy -2
for which
g = 2(y-2) (y-5)/11 - 2(1-0)¥] (6.34)

Some tedious calculations show that the conditions for positive definitemness

of G and GH-IK are now
2<y<5
41 - 32y + 4oy (L+ay) + 8y2(l-a) > 0

(6.35)
7 -4y + 20y > 0

1+ (1-o) &v2-3y) > 0
These conditions define the shaded area above y = 2 in Fig. 6.1. Thus, with

the exception of the line ¥ = 2, we have determined the entire region of the
parameter plane which produces a stable equilibrium.

We may perform a special investigation for y = 2. We have then

a; 8 - 2 |o,- 3g glba-2)
=] ! , oMk = -k—;‘— 1 (6.36)
g o g-3ot2 a, (4x-2)

where the symmetry of GHfIK implies

3o

—2_
3-4o (6.37)
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Choosing o = 1, we find that the conditions for positive definiteness of G
and GM.IK are now that there exist an @, > 0 such that

G-40)” - 9, > 0
Ga-2) [ (3-4a) % - 92,1 > 0 (6.38)

(3-4a)? - %, (3-42) > 0

These can be satisfied by choosing 90:2 < (3-4&)2, provided o > %, # %. This

completes the determination of the entire region of astability in the parameter
plane. Again we note that the addition of any form of proportional damping

C=TM+B(MB <0, T+8>0) (6.39)
leads to asymptotic stability of the equilibrium by Theorem 1, provided (y,a)
is in the shaded region of Fig. 6.1. The difficulty of reaching this general

conclusion by eigenvalue analysis need not be dwelt upon.

6.1.3 A General Approach

When problems are encountered for which there seems no apparent choice
for the n arbitrary elements of G which produces a usable result, or in which
the order is so great as to require the use of a computer, it may be desir-
able to apply the method in its fullest generality. A systematic approach
might be as follows:

1) Define diag [Gi] = e, vhere e, = (1,0,...), &, = (0,1,0,...) ete.

2) Determine Gi by the symmetry of Gi and GiM-lK
n
3) Set G =z aiGi
i=1 n
-1 -1
4) Note that GM K = aicin K
i=1
n
-1 -1
GM 'C z cziGiM C
i=1

5) Determine whether a vector ¢ exists such that GM-lc is positive defi-
nite or semidefinite, if so, use Theorems 1, 2, or 3.



6) Determine whether a vector « exists such that GM-IC is skew-symmetric;
if so, use Theorem 4 and/or 5.

6.1.4 Exceptional Cases

Although it is true that there are problems for which there exists no
matrix G satisfying the conditions of any of the first four theorems, implying
stability cannot be determined in this manner, it seems that there is often
something quite unusual about such problems. One such is the following:

Mg +Cq +Kg =0
M= , c = , K= (6.40)

where m, > 0, m, > 0, and klmz i k2m1'

Using the most general form for symmetric G, we have

G = (6.41)
g 0’2
and
a.k.m gk,m
GM 1K =L 112 2’1 (6.42)
™1™ | gkom o k.m
8%1™ 2%2™
Symmetry implies
g=20 (6.43)
and therefore
0 o m
oMl = - 172 (6. 44)
12 | co.m, ©
271

and it is impossible to satisfy Theorems 1 or 3 for any choice of Qul, az).

Theorem 4 can be satisfied by choosing @, = m,, @, = m,, provided oM 1k

is then positive definite. Since

G = . Gn'lx = 1 (6.45)
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>0, k, > 0., However,

we see that Theorem 4 implies stability provided k 2

1
eigenvalue analysis assures stability provided only that

k1m2 + k2m2 >0

(6.46)
2

k1k2 > -c

which allow the possibility of one of the ki actually being negative, However,

noting that our GM-1 = I, we see that Theorem 3 assures that instability will
occur if C is increased by any positive definite matrix and either of the ki

is negative. That is, when the ki are in the range for stability predicted

by eigenvalue analysis, but not in the range for which any of our stability
theorems apply, the addition of any complete dissipation leads to instability.
On the other hand, when the ki are in our allowable range, kl >0, k2 > 0, the

addition of any complete dissipation leads to asymptotic stability by Theorem
1, a much more natural result,

6.1.5 Remarks

Although each of the examples was begun under the assumption of no dis-
sipation and we initially applied Theorem 4, this was only for the purpose of
illustrating that we can make qualitative statements about the effects of
various types of damping via Theorems 1 and 3. In practice, Theorem 4 is the
most difficult to use and, in the real world, it is the least likely to apply.
When the linear approximation indicates stability which is not asymptotic,
the stability or instability of the physical system is determined by parameter
errors and/or any slight nonlinearities [58,15]. Therefore, Theorem 4 is use-
ful in problems which are primarily of academic interest.

These remarks do not generally apply to Theorem 2, although it too comn-
cludes only stability. 1If the conditions of Theorem 2 are satisfied and those
of Theorem 1 are not, one can often still conclude asymptotic stability by use
of an invariance principle due to LaSalle [59]. This usually requires a de-
tailed analysis of the differential equations, however.

Theorem 5 allows the rapid generation of up to n integrals, particularly
when C = 0, and so permits a possible reduction in the order of the system
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This is a well known result concerning the phenomenon of gyroscopic
stabilization [58].

In particular, one must determine whether any invariant set other than

T -1
(ﬂl’ 22) = (23 2), is contained in the set defined by 4, GM C % = 0. If

not, the conditions of Theorem 2 imply asymptotic stability of the equilibrium

{59].



from 2n to as low as n. However, the algebraic difficulties of such reduction
may be considerable. The primary use of Theorem 5 is to determine "constants
of the motion," in problems in which these are of some interest.

6.2 Continuous Systems

6.2.1 Introduction

The class of nonself-adjoint eigenvalue problems is not as extensively
investigated as that of self-adjoint ones and special attention must be paid
to the mathematical methods used in determining the eigenvalues. A justi-
fication of applying the Galerkin method to bars subjected to nonconservative
loads was offered by Leipholz [60] and the convergence of this method, as ap-
plied to the same problems, was studied by him in Ref, [61]. Leipholz also
used the method of finite differences in evaluating the eigenvalue of an
elastic bar subjected to a uniformly distributed tangential load [62]. He
extended the applicability of the Galerkin method to a broader class of 1li-
near nonself-adjoint eigenvalue problems [63] than those studied in Ref. [62].
This class contains all eigenvalue problems which arise from originally self-
adjoint problems by addition of a linear differential expression which de-
stroys the former self-adjointness., The convergence of the Galerkin method
for nonconservative stability problems of plates and shells was studied by
Leipholz in Ref. [64]. A discussion of the Galerkin method as applied to
systems with damping is discussed by Leipholz in Ref. [65].

Levinson [66] has shown that for certain problems the Galerkin method
converges for a broader class of trial functions than assumed by Leipholz.
Further, Levinson extended Hamilton's principle and the Ritz method such as
to make them applicable to nonconservative problems.

The Ritz method in nonvariational formulation was applied to nonconser-
vative problems by Marchenko [67]. Both the Ritz and the Galerkin methods
have been extended further by Leipholz [68]. In particular, the conditions
to be fulfilled by the coordinate functions are weakened; these functions
need not satisfy the dynamical boundary conditions and under certain circum-
stances not even the geometrical ones. This study includes also some consi-
derations of convergence.

In treating dissipative dynamic systems of mathematical physics, which
are governed by nonself-adjoint linear operators, it is oftem found conveni-
ent to introduce the adjoint system (or field) and to consider formally a con-~
servative process [69], [70]. The original field contains an energy sink, and
in the adjoint field an energy source of the same strength is incorporated in
order to make the combined field conservative.

It is of interest to note that the notion of the adjoint field can be in-
troduced also in treating nondissipative, nonconservative systems, i.e., dy-
namic systems subjected to circulatory forces. In particular, in structural
systems subjected to follower forces, the consideration of adjoint force fields
leads to interesting consequences. Indeed, for this class of nonconservative
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systems, both the original field and its adjoint force field are associated
with energy sources [71], and yet the combination of these two fields results
in a comnservative one.

As an example, consider the Beck problem [33], i.e., a cantilevered elas-
tic bar subjected at its free end to a compressive follower force (see Fig.
6.2). The equation of motion and the boundary conditions are

2 2

23Y , g @Y 0¥ .

8x4 ax2 atz

=—al= =

Y = 3% 0 at x =0 (6.47)

2 3
a—1=—a—-‘:§=o at x =1

ox ox

where dimensionless quantities are employed. We now construct the adjoint
boundary-value problem by considering a function z = z(x,t), defined for
0<x=<1and t 20, such that the following equation of motion and boundary
conditions at X = 0 are satisfied identically:

a4z azz azz
.—+F—2— -——2-=
ox ox ot (6.48)
z = 2z 0 at x =0
x
We then seek boundary conditioms for z, at x = 1, such that
1 4 2 2 1 4 2 2
jz(g—%+Fa—§+—a—§)dx=Iy<i%+F-a—-§+§-—;)dx (6.49)
o ox ox ot o ox ox at

If we now integrate the right side of the preceding equation by parts and use
boundary conditions in Eq. (6.47), we immediately obtain the following boun-
dary conditions for z at x = 1:

2 3
—a—§+Fz=o ¥z, 52 _ at x =1 (6.50)

ox ax3 ox
Equations (6.48) and (6.50) now define the system adjoint to the Beck problem.

The inspection of Eqs. (6.48) and (6.50) readily reveals that they describe
the Reut problem [8] sketched in Fig. 6.3.
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It was shown in Refs. [8] and [33] that both systems depicted in Figs.
6.2 and 6.3 lose stability for the same value of the load, i.e., F.= 20.05.

For F >-Fcr, energy is transferred to the bar by the work of the applied

force, which in turn increases the conservative energy of the system, making
the response unbounded (flutter). Thus, both force fields are associated with
source of energy. However, it can be readily seem, both on mathematical and
physical grounds (see Fig. 6.4), that the combined system is conservative,

and the bar shown in Fig. 6.4 is incapable of losing stability by flutter.
Indeed, the loss of stability in the combined case will occur by divergence
(buckling, attainment of another equilibrium configuration). In conclusion,
it should be mentioned that adjoint systems can be constructed also fer the
nonconservative problems discussed in Refs. [8], [72] and [73].

Adjoint systems have been also examined in Ref. [74]. The possibility
of comnstructing adjoint equations for the purpose of developing approximate
methods in aeroelasticity similar to energy methods was indicated already in
Ref. [75]. The usefulness of adjoint systems in solving stability problems
of elastic continua with follower forces was exhibited in Ref. [76], as de-
scribed below.

6.2.2 Stability of an Elastic Continuum

Let us consider an isotropic, homogeneous, elastic solid occupying a vo-
lume V bounded by a finite surface S. It will be assumed that on one part of
the boundary of the solid SO the displacements are prescribed so as to pre-

clude a rigid body motion. The body is at rest and in a state of initial
stress cij’ i,j = 1,2,3, due to the applied nonconservative (follower) forces

on the surface S -~ So of the solid. To study the stability of this rest po-

sition the system is slightly perturbed and the type of ensuing motion is
studied, Referred to an orthogonal cartesian coordinate system xj, Bolotin

[8] has obtained the following equations for the emsuing motion:

2
34 Ju 3" a
d Uk d 1 1
T Ay, =— ) F¥TB— o= ) ~p =0 inV (6.51)
ij ijke axz ) axj ( jk Bxk ) at2
Ju Ju
Aijkz 3;; nj + Bcjk 3;; nj = Bpi on S - So (6.52)
b = 0 on So (6.53)
Ay = M0y i0y, + 2088, (6.54)
0, 1#3]
6,, =
ij 1, 1=}
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In Egs. (6.51)~(6.54), p is the mass density,"ﬁj is the displacement
vector measured from the undisturbed state and n.j is the outward positive

unit normal vector to S, No body forces are assumed to be present and B is
a parameter associated with the magnitude of externally applied surface trac-
tions. In Eq. (6.54), A and , are Lamé's constants of elasticity. The re-
peated indices are summed over the range of their definitions and pj are the

components of perturbations of the applied surface tractions and their forms
will depend on the behavior of the nonconservative forces. They will gene-
rally be homogeneous functions of displacements and their derivatives with
respect to both space and time, In the present study, however, it suffices
to restrict Py to the following expression:

ou,
- i
Py aijuj + bj axj on S - So (6.55)

where aij and b, are coefficients which are independent of the vector'ﬁj and

3

its derivatives but im general are functions of spatial coordinates x

j.
We may assume a solution of the above boundary value problem in the form

- iwk . 1/2
uj(xl,xz,xB,t) = uj(xl,xz,xs)elw R i= (1) /

which results in the following eigenvalue problem:

3

fo) 11}
3 Yk d i :
= (A, == )+p=> c.—)-Au.=0 in Vv (6.56)
ij ( 1jke BxL ) ij ( jk Bxk i

auk du, du

i i
AijkL BXL nj + Bcjk Bxk nj B (aijuj+ bj bxj ) on S - So (6.57)
u, = 0 on So (6.58)
A== o (6.59)

Equations (6.56)-(6.58) constitute a nonself-adjoint homogeneous system
and stability of the solid will be governed by the character of the eigen-

values AP, m=1,2,.,.,o for nontrivial solutioms. Imn view of the fact that
the applied surface tractions are not derivable from a potential, it is not

possible to express the eigenvalues A" in the form of a ratio of two positive-
definite integrals, and thus the usefulness of variational principles seems
dubious in this case.
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6.2.3 The Adjoint System

By constructing an adjoint system by means of certain mathematical rela-
tions analogous to the definitions in the theory of ordinary differential
equations, A may be expressed in terms of the original and the adjoint vari-
ables, and as a consequence A will assume a stationary value. In the theory
of ordinary differential equations, & system adjoint to one governed by a dif-
ferential equation and boundary conditions may be constructed formally by re-
peated integration by parts [77]. Being guided by this observation we examine
the problem

Bd*
- _9_ —31 N _ kex
e ("ijkz ) a ( ik B, ) Kd; =0 inV (6.60)
au} i
o—— - * L -
ijkL ax n + Bcjk Bxk j Baij“j + Bcijuj on S So (6.61)
u‘; =0 onS§_ (6.62)

as being possibly adjoint to that given by Eqs. (6.56)-(6.58). Here, cij is
a function of b,, u, and its derivatives, If an adjoint system is to be de-

fined through equations (6.60)-(6.62), one must obtain c,, by solving a cer-

ij
tain homogeneous integral equation on the surface § - So' The above-mentioned

integral equation reduces to satisfying the following:
i
b, — = u,c = 0 (6.63)

Expression (6.63) involves three independent equations in nine unknown
quantities cij and thus an adjoint system is mnot uniquely defined ([77]. As

a consequence of Eq. (6.63) the following holds:

o ou
.[V“’I [S:_ac'j' ("ijkz Ecuf ) +B Si.j ("jk —B_x-i )] av

*

ls)
- j; % [a:j (Aijkz —:E ) + B Bx ( %3k a )] dav (6.64)

This expression appears to be similar to*Haxwell's reciprocity relations
in conservative systems, in which case u, =u. The bracketed terms are re-

cognized to be resultant forces associated with the original and the adjoint
systems, respectively.
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Now let AP, m=1,2,.,.o, be the eigenvalues of equations (6.56)-(6.58),
and Afm, m=1,2,...2, those of equations (6.60)-(6.62), while the correspond-
ing eigenfunctions are ujm and u;m, respectively. From Egqs. (6.56), (6.60)
and (6.64), we have

ou,”®
m m %n «n [ o i ):]
A u, u, dv = u = o, av
J; i 71 J; i ij ( ijkz ax ) ( jk axk
u*™ ™
m [ Yk 3 i
= u - | A,. +8—\o., — dv
j; i [ij ( ijke axz axj ( jk axk )]
_ kN m i
= A Iv u, " av (6.65)
Therefore,
(A"- p*T Jv u, ™™ av =0 (6.66)

At this point we wish to apply the argument of Roberts [77] to prove
that the sets of eigenvalues {A"} and {A*m} are identical. Let us suppose
that {A"} and {*™} are not identical sets, then

m
B
e o[ B G S ) o G )] o

Iv“i“idv 0 .[ Ui 1szax TP Jkax =0

(6.67a)
and for the special case when m = n,
M m =

[ ™™ av =0 (6.67b)

v

If the set of eigenvectors {uim} is complete, Eq. (6.67b), together with
Eq. (6.67a), would imply that u:m is identically zero, which is not nontrivial.

Hence the two sets of eigenvalues are identical. Also, similarly to the pro-
perty of orthogonality of principal modes in the theory of small vibrations,

Eq. (6.67a) reveals that the two sets of eigenfunctions {uim} and {u:m} are

bi~orthonormal, i.e., each function of either set is orthogonal to every mem-
ber of the other set except those which belong to the same eigenvalue.
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From (6.65) it also follows that

a m
.[“*im ['a??; ()“ijk,t 3:'5—) B, ax ( %5k ax )] av

Am = v M

j u, T
v i

Let us consider now the effect on A? due to infinitesimal variations

(say) (6.68)

NHlI—'

ﬁuim and éd:m which are arbitrary except that they satisfy the boundary con-~
ditions (6.57), (6.58) and (6.61), (6.62), Therefore,

m _ 1 _ ,m
SN = 12 (61l A 612)

3

=WJ {[ax (M;uax )+B_B%(Jkax )]Gu

ddu ™ a6u, ™
+ aTaJ. (xijkl, _a;:f_ ) + B '3'3; ("jk ax: )]

m, %m

m *m m
- A (u sur™ + wFTu, )} av (6.69)

Equation (6.69) reduces, after application of the divergence theorem
and satisfaction of boundary conditions, to

m m

auk du
ox” = W Iv { ou}" [3_2; (Xijk!, E7 )+ —az—j (c’jk Bx:; )- Xm“im]

m[ 8 au:“ _9 Bu:m‘ _ | km
buy [ij ()‘ijkl, o, ) +B o, ("jk o, ) Yy ]} v (6.70)

Equation (6.70) is clearly a useful version of a variational principle
and implies that if Eqs. (6.56) and (6.60) are obeyed, 80" is zero with an
accuracy of first order for all small arbitrary variations éui and 6u e

that satisfy the boundary conditions (6.57), (6.58) and (6.61), (6. 62),
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respectively. Thus a definite statement can be made regarding the error in-
volved in stipulating that the eigenvalues are stationary values.

6.2.4 An Approximate Method of Stability Analysis

The extremum property of the eigenvalues AF, as expressed by Eq. (6.70),
suggests an approximate procedure for their determination, in the spirit of
approximate methods for self-adjoint systems based on variational principles.

*

We may select two sets of trial functions Uim(al,az,...) and U:m(aq, ab,...)
which satisfy the appropriate boundary conditions and contain undetermined
parameters ¢/, and az. An approximate expression of the eigenvalues Am is
obtained, by using Eq. (6.68), as a function of these parameters. A station-

ary value of AF is then obtained by determining the parameters from equations
of the type

m m
SA . . oA _
aaj 03 -5%] 0

which is reminiscent of the Rayleigh-Ritz procedure for conservative systems.

6.2.,5 Illustrative Example

In this section we wish to apply the approximate method discussed above
to investigate the stability of equilibrium of a cantilevered bar subjected
to a follower load. The governing equations of motion may be expressed as

(8l

4 2
du,pdu_ 2 .o 0<xsl (6.71)

4 2
dx dx

- du _ =
u-= ax 0 at x 0

(6.72)

dzu d3

u
=== =90 at x = 1
dx2 dx3

In Eqs. (6.71) and (6.72), dimensionless quantities are employed and w
denotes the frequency of oscillation, The equations of an adjoint system of
this problem, which was first discussed in Ref. [78], are as follows:

4 % 2 %
9—2—+Fd—;- 2¥ =0 6.73)
dx dx
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LA el 0 at x =0
X
(6.74)
2 % 3 o*
du + Fu® = du + F — du =0 at x = 1
2 3 dx
dx dx

The eigenvalue uF in the two problems will be the same as established in
general in the previous section, and we wish to determine it approximately.
We assume, then, that u and u* may be written in the form:

u= z o u (6.75)
n=1
N
& * %
u o= o u (6.76)
n=l

where u, d: are certain assumed functions of x which satisfy the boundary
conditions (6.72) and (6.74), respectively, and @ s d: are constants to be

determined as discussed. We multiply (6.71) by u* and integrate over the
length., If we substitute the expansions (6.75) and (6.76), the following
relation is obtained:

f Z ot — +F -—) z a u_dx z amanAmn

o2 ° m=1 = B,0=l (6.77)
N
I E: E:d u dx d*a B
n mn
° m=1 m, n=1
where
1 d4u
A = J u* ( ) dx
mn m
o dx
1
B = j d*u dx
mn o m M

To obtain the best possible result, we must now seek an extremum of the

expression for w2 considered as a function of the parameters o, and d:. A
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simple and familiar way would be to treat w2 as & Lagrangian undetermined
multiplier and seek directly the stationary value of the following:

N N
. * -
1 2 z o"ma’nAmn d;aann (6.78)
® m,n=1 m, n=1
by requiring that
-aL = ——aI = ()
ad; aan

Since u and u* are functions that satisfy the adjoint relations in the
sense discussed before, it is a simple matter to show that BI/aa: and aI/aah

would result in two matrix relations which are adjoint to each other and
thus they would yield identical eigenvalues, Therefore, in the sequel only
the following relation will be considered:

oL - (6.79)
m
Equation (6.79) is a homogeneous, linear, algebraic equation in o and,
therefore, a montrivial solution exists only if the determinant formed by
the coefficients of o, vanishes., This results in a polynomial equation for

w2 which represents approximately the frequency equation of the system.

Let us consider the following specific trial functions with N = 2:

4
2 2 3 3 4.3 5
u = (x -3 X +~%— ) + @, (x - X +-Ta b4 ) (6.80)
2 2(F*HF+24) 3 P24 12 4
o o= dﬁ { X - 2 X +-—§————————— b4 }
F°+ 6F + 72 F%+ 6F + 72
3 2(F2+12F+120) 4 . F+ 6F + 72 5
+ QPE {x -5 x + 3 X } (6.81)
F%+ 16F + 240 Fo+ 16F + 240

Functions (6.80) and (6.81) satisfy the boundary conditions (6.72) and (6.74),
respectively., Following the procedure as discussed before, we obtain the
frequency equation:

4 2 _
(1M M) @ €811 Tpa+85 T 178121~ Tha 8 )0+ (8y18,57681,8,) = 0 (6.82)
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where
4 FA FB

o =3 -A+2B+53- 80
612=1-§A+§B+%--§-§3 g—g
621=1-%A'+%B'+-§—o--l-(%ur+%zn'r
922=-g'--g-A'+%B'+%S-F--21-8-A'F+-‘1}—23'F
“11”%;_0+g_;6‘“'%%6'3
“12“'1—2:;_0"'%'2'6‘“—1';%63

T = 35 Y GG A T 6w b
“22"%+1—;%3Al'1%53’

2
A = 205+ 4F + 24)

F2+ 6F + 72

e 12

B = 2
F™+ 6F + 72

_ 2(F%+ 127 + 120)

F2+ 16F + 240

AI

724 6F + 72

F24+ 16F + 240

B’ =

Equation (6.82) will yield distinct real roots for vanishing F, and when
F is increased the two roots will coalesce at the critical value F = Fcr beyond

which (6.82) will yield complex roots. By trial and error Fcr is computed to
be 19.45, whereas a more precise calculation by Beck [33] yields F_. = 20.05.
Incidentally, if one uses only the trial function (6.80), the method of

Galerkin yields Fcr = 20.6. This result was first computed by Levinson [66].

A similar approximate method of stability analysis was worked out inde-
pendently of the above by Ballio [79].
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6.3 Energy Considerations

It appears appropriate to discuss energy considerations in the context
of methods of analysis, because such considerations, as in the class of con-
servative systems, may lead to the establishment of approximate methods of
analysis, In addition, energy considerations may be useful in deriving the
differential equations of motion (as well as the boundary conditions) and to
provide additional insight into certain aspects of instability phenomena,

As compared to the vast amount of literature concerned with stability
of mechanical systems with follower forces, it is somewhat surprising to
observe that only few studies contain energy considerations. While investi-
gating the dynamics of articulated pipes, Benjamin [80] invoked Hamilton's
principle and discussed the energy transfer to the system. In Ref. [71] an
extension of the usual energy method was proposed, such as to make it appli-
cable for the stability analysis of circulatory systems with and without
velocity~dependent forces. Energy considerations formed the basis of deriving
equations of motion in systems with follower forces in Ref. [81].

Energetic and thermodynamic considerations in stability of conservative
and nonconservative systems were discussed in Ref. [82]. In Ref. [83] an ap-
proximate energy method for finding the relationship between the force para-
meter and the amplitude of steady-state oscillations of nonlinear, nonconser-
vative, autonomous systems was suggested, Stability criteria on the basis of
"equivalent energy" conditions were established in Ref. [21].
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CHAPTER VII1

POSSIBILITIES OF PHYSICAL REALIZATION

7.1 Introduction

It is a peculiar common feature of much published analytical work om the
dynamics and stability of mechanical systems with follower forces, that the
possible physical origin of such forces is not mentioned. The follower forces
are introduced into the analysis either through a sketch, with forces being
merely indicated by arrows, or through a specified functional dependence of
the forces on generalized coordinates., Thus the problem is reduced immediately
to a mathematical analysis and the relationship to mechanics (as a branch of
physics or engineering) becomes most tenuous. The motivation for much of this
type of work appears to have been sheer curiosity in determining the sometimes
unexpected behavior of an imagined system, rather than an explanation of ob-
served phenomena.

This clearly unsatisfactory state of imbalance in the development of an
area of applied mechanics can be rectified by paying, as a first step, atten-
tion to the possible physical origin of the follower forces which are intro-
duced into the analysis and building, as a second step, actual demonstration
models, to be followed by a quantitative experimental program.

Let us discuss in this Chapter some possible origins of follower forces.
If the mechanical system should be able to lose a position of equilibrium
through oscillations with increasing amplitudes, a source of energy should
be coupled, through the follower forces, to the system, In one category of
problems involving rotating shafts this energy 1s supplied by the driving
motor and stability is lost by lateral oscillations. This category of prob-
lems is deliberately not covered in this report.

In another category, the energy is supplied through a moving fluid to
the mechanical system. 1If the fluid surrounds the mechanical system whose
stability is being studied, the problem belongs to the broad and technically
most significant area of aercelasticity. The kinetic energy of a fluid can
be transferred to the system also through internal flow in flexible pipes and
by means of impinging -jets. Some of these possibilities will be discussed
presently,

It is conceivable that other forms of energy, such as, e.g., chemical
and electro-magnetic energy, could constitute appropriate sources which,
under suitable conditions of coupling, could induce flutter-type instabili-
ties. Among all these possibilities, the author is aware only of some recent
work on instability (including flutter) of bars induced by radiant heat, as
mentioned in Sect. 7.4.

111



7.2 Instability Modes of Cantilevered Bars Induced by Fluid Flow Through
Attached Pipes

7.2.1 General

Let us discuss, as an example, the problem stated in the above heading.
This particular example has been chosen, because various types of instabili-
ties occur in a richer variety than, e.g., in a single, axi-symmetric flexible
pipe conducting fluid, a system discussed in Chapter VIII since some actual
experiments have been reported., It will be shown that a cantilevered bar
having two axes of symmetry may lose stability by either torsional divergence,
torsional flutter or transverse flutter, but not transverse divergence. The
Coriolis forces can have either a stabilizing or a destabilizing effect on
both the torsional flutter and the transverse flutter, depending upon the
parameters of the system [84]. Stability of a similar bar subjected to a
single eccentric follower force was discussed in Ref. [85]. The treatment
can be considered a special case of no Coriolis forces.

7.2.2 Derivation of Equation of Motion and Boundary Conditions

We consider a thin-walled, cantilevered, elastic beam with two pairs of
flexible pipes, which are attached to the bar at a distance h/2 from the
z-axis (so that the whole system deforms as a unit) and pump fluid at a con-
stant velocity U through the pipes, as sketched in Fig., 7.1. We designate
the length of the system by L, the torsional rigidity by C = GJ, and the
warping rigidity by c, =EC, [86], and similar to the work of Benjamin [80]

obtain the equation of torsional motion of the system, using Hamilton's
principle, With ¢(z,t) denoting the angle of rotation at section z and at
time t, the strain energy of the torsional deformation is [87]

1 n s
v, =3 I: [c, (v )2 + C(op )2] dz (7.1)

where primes denote differentiation with respect to z, The kinetic energy
is

L
1 2,..2
T, -3 jo meZ (§)° dz (7.2)

where a dot denotes differentiation with respect to time, m is the mass of
the assembly per unit of length (exclusive of the mass of the fluid), and r
is the polar radius of gyration of the cross-section of the system.

The total kinetic energy of the fluid may be obtained by adding to the
kinetic energy of the fluid contained within the pipes, TZ’ the change in

the kinetic energy of the fluid entering and leaving the pipes during a very
small interval of time At:
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' 1.2 1 2)
T T2+2MU(ZUO 2 U;°) ac (7.3)

where T/ is the total kinetic energy of the f uid, M the mass density of the
fluid per unit length of each pair of pipes, o the outlet velocity vector,
and Ui

in the z-direction, and U =7+ nUT where T is the unit vector tangent to

the inlet veloc1ty vector. But ﬁ; = Uf, where i is the unit vector

the top (bottom) pipe at z = L, Z is the position vector of the top (bottom)
pipe at z = L, and n is the ratio of the area of each pipe to that of the
attached nozzle at the free end. Hence, 5T’ becomes

§T! = 6T, + 2MU(Z + nU%) - 6T (7.4)

The components of the absolute velocity of the fluid are 9 + U(ay/3z)
in the y-direction, and U [1 - % (y')z] - w in the z-direction, where w(z,t)

denotes the average displacement at section z and at time t in the z~-direction,
T, then becomes (within an additive constant)

2
- l"‘ 1.2 )
T, = 2M ] (2 + Uy ’- U%) dz

But y = (h/2)yp, which yields

-2nr[h 32 Uh bo' - Ui | az (7.5)

With 3 being the unit vector along the y-axis, we have (see Fig. 7.1)

T=7sino+1icoso= E(y')z=L +1
= [22 cp'(L):l j+i
2= 50,y - 1, = [Few ] - v ]t
Then
. 2
(2 + a%) + 62 m - 0l sw(L) + 2o [P(L) + ol ¢"(L)] bp(L) (7.6)

where w(L) §w(L) is neglected (being a term of higher order). The Lagrangian
now becomes

L=T +T, -V, + 2MnUPw (L) (7.7)
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and Hamilton's principle takes on the form

t 2 .2 .
s [ 1ae - [T w0 [0 + 00 9/(W)] sp(Lyde = 0 (7.8)
t t

1 1

where

w(L) =-% fL rz(Q')zdz

[+]

Carrying out the variations and using integration by parts, we obtain

4 2 2 2. .2
¢, i—;f + [ZMDUZrZ- c] a_g; + MUh2 —ig 2 4 (mr2+ M %—) ﬁ—z‘Q
oz oz ot

= aj = - =
? =3z 0; z =0

2
.anE =0
0z z=1L (7.9)

2 [uar(2:2- 1) - 6] &2 - 0

We now introduce the following dimensionless quantities:

g=%
oy
[[mr +(h /2)M]L ]
- EE_
n = c,
=1 =M
@¥TT B =a

1+(a*/2)B ¢
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Equations (7.9) then become

4 2 2 2
29 4 [2F-y] 2+ KB:_F502§._9;+§_9-0
a§4 agz n ogoT BTZ
Pe)
QP-—agé-O; acguo
=0
ae? L
E =1 (7.10)

3 2
Bl (oo 9) -0

which are analogous to those obtained in Ref. [72] for cantilevered bars
subjected at the free end to follower forces, except for the third term in

the first equation, which is due to the Coriolis acceleration. As we shall
see in the sequel, this term can have either a destabilizing or a stabilizing
effect. That is, for sufficiently small Coriolis forces (n large and B’ small)
the system loses stability (by torsional or transverse flutter) under smaller
F than obtained when n = «» (no Coriolis forces). On the other hand, for B'/n
sufficiently large, the critical value of F can be increased by increasing

B’/n.

We note here that, in torsional instability similar to tramsverse in-
stability, the Coriolis forces have an effect similar to that of internal
viscous damping [32]. That is, although damping (and also Coriolis forces)
is a dissipating agency, when it is sufficiently small, it may act as a chan-
nel for the transfer of energy to the system from the source, which is always
associated with the type of nonconservative forces considered here [71].

7.2.3 Stability Analysis

Frequency equation. We take the solution of system (7.10) as 9(E,T) =

ﬁ(g)ein and obtain the following eigenvalue problem:
a*y a%y m, 24y 2
7 T [2F-u] + ({w) (B T)a gg-wy=0
ag? n S

at E =0

dg g=1 (7.11)

3 2
:—§§+[F (2-3’—)-u -3—%=o
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We then let ¥(E) = Aeilg and obtain

- (ZF-n)xz -w (B’ adr-w =0 (7.12)

n

Equation (7.12) is a polynomial of degree four in )\ and therefore has,
in general, four complex roots. Let these roots be designated by A

j=1,2,...,4. Then, ¥
4
We = ) aethE
i=1

which may now be substituted into the boundary conditions to yield four homo-
geneous equations for four constants Aj. These equations are

4

}: A. =0
i

j=1

4
2 )‘jAj =0

j=1
(7.13)

4

2_ iz
2 (lj T\))\jAje 0
i1

2
where T) = F(2-o /2)- u. System (7.13) has nontrivial solutions if and only
if the determinant of the coefficients of A.; j =1,2,...,4 is identically
zero, i.e.,, the frequency equation is J

Tq*y) 5
A=e O 0, “H 0 (A ) Oy m0g)

1i(x,+0q)
- DRy 05 (0

1gh) 5
cont.



1(h,H2g)
e 20202 maA) Oy (-2 )

1(a,*2,)
s e 2RO ™) (0 (hga)

1gth) 2
+e (g3, “Fgn) (4 -2g) (-2 )) = 0 (7.14)
where kl’ AZ’ K3, and 14 are defined as functions of w through Eq. (7.12).

Torsional buckling. To obtain the condition for divergent torsional
motion, we let w = 0 in Eq. (7.12) and obtain X1 2 = 0, and k3 4 = + /(ZF-n).
? b4

Then, with » = 6ﬂ2 and F = 2F - » = Ynz, Eq. (7.14) reduces to

af2 . _b4ycosn/y (7.15)
(y+6) (1-cos mafy)

which is identical to the equation obtained for the torsional buckling of a
cantilevered beam subjected at the free end to follower forces [72]. The
first branch of the torsional buckling, corresponding to the first mode of
instability, is shown by the solid line in Fig. 7.2.

Torsional flutter. For given ¢, B, n, § and F = ynz, Egs. (7.12) and
(7.14) yield the frequencies of torsional oscillations. When F is small,
these frequencies are all located on the left hand side of the imagimary axis
in the complex iw plane and the system can perform only damped torsional
oscillations.

As we increase f, one of these frequencies approaches the imaginary axis,
and for a certain value of F, say F o» Eqs. (7.12) and (7.14) yield a real

value for w. If we now increase F beyond this critical value, one of the
roots of (7.14) becomes complex with negative imaginary part. The beam will
oscillate with an exponentially increasing amplitude. Consequently, we shall
seek, for given o, B, n, and §, values of w (real) and F which identically
satisfy (7.12) and (7.14). This can be done directly with the aid of a com-
puter. The computer can be instructed to find the roots of Eq. (7.12) for
specified values of o, B, n, §, w, and y, and then compute the value of A.

By varying the value of w and y systematically, the critical w and y may
easily be selected which make both real and imaginary parts of A identically
zero., This is illustrated im Fig. 7.3 where for « = 1.50, 5 = 1.0, B = 1.0,
and n = 1, both real and imaginary parts of A = Al + iAz are plotted against
the values of wz. We see that for vy = 3,40, and w2 = 1.13n4, A is identically
zero. Similar results may be obtained for other values of o, B, and n. In
this manner torsional flutter curves may be constructed., The first branch
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(the only practically significant one) of torsional flutter is shown in Fig,
7.2 by dashed lines, for § = 1, n = 1, and indicated values of 8. The solid
curve for torsional flutter im Fig, 7.2 is the limiting case when n = » and
corresponds to the torsional flutter of a cantilevered bar subjected at the
free end to compressive follower forces [72].

It must be noted that, even for relatively large values of B(n=1), the
Coriolis forces may have a destabilizing effect for certain values of a.
(For example, for p = 0.1 and 1.0 <o < 1,35, as is seen in Fig. 7.2,)

Transverse flutter., In addition to torsional buckling and torsional
flutter, the bar may lose stability also by transverse flutter [87]. The
equation of motion and the boundary conditions for this case have been de-
rived by employing Hamilton's principle in [80] and D'Alembert's principle
in [87]. Here, we may simply identify C, with EI, o(z,t) with y(z,t) and
write

4 2 2 2
Bt 2L+ o’ 2+ aw SL + (+m) 2L =0

324 az2 dzat 3t
-§x = b4 =
y =3 0; at z =0
2 3
Sy .9y, 0; at z =0
2
oz dz

which, by introducing the following dimensionless quantities:

z EIL
g = 1 T=t T 4
(2M+m)L
R S
1 El ’ m ? 2p+1

reduces to

4 2 v 2 2

€ 3 £oT 3¢
=-§z= . =

2 3

-a—y-.-=-a—§=0; gal

ag® g
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Equation (7.12) now becomes
4 _ 2 _ 88” ... . '
-2 - JBr ) a -l -0 (7.12%
and equation (7.14) takes on the form

1y +,)
1727, 2, 2

1(x,+)
173 2, 2

i(H)
2
RV VLW W T W W
(7.169
1(n,+2)

1, +,)
2 "4 2.2

100g%),)

For a given B and n, we now seek values of w and Fl which identically
satisfy (7.12) and (7.14’). In this manner we obtain the limit of trams-
verse flutter, as shown by horizontal dashed lines in Fig. 7.2 for
EIrZ/C1 =1.,5 and B = 0.1, 0.2. 1In this figure, the horizoatal solid line

indicates the limit of transverse flutter for n = = [72], We note that for
B = 0,5, 1.0, the transverse flutter occurs at y = 12,2, and 15.8 respectively.
These values are not shown in Fig. 7.2.

7.2.4 Analysis of Flutter by Indirect Method

The method used in the previous section for the analysis of flutter was
a direct one. That is, for a given system we directly obtained the critical
values of ¥y and w, One may solve the same problem by an indirect method which
was employed in [87].

To this end we let xj; j =1,2,...,4 denote the roots of Eq. (7.12).

Then we have
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M T At Ag T, =0

Ad, F Mg + 11k4 T A0, + AA, + A3k, = - (2F-»)
(7.16a)

o [far B\ 2
Ahghs Aok, AAgh, + A, = (87 ) ou
AA, = = 2
AdaAshy, w
The first equation in (7.16a) is identically satisfied if we let

hl =a-b-c¢

-a+b-c

>
N
1]

(7.16b)
k3 =~a-=-b+ec

a+b+c

"

and from the remaining equations we obtain

a2 + b2 + c2 = 2F -

abe == J(B' E) 2o (7.16¢)

a4 + b4 - 2a2b2 - 2b2c2 - 2cza2 = - w2

We now let

a=7% (p+ iq)

N =

(7.16d)

b

i
N =

(p - i9)

and from (7.16¢) obtain

p2 - q2 + 2c2 =2F -

(P2+ qz)c = % J(B' %) oo (7.16e)

(pz- c2)(q2+ c2) = w2
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where p, q, and ¢ are all real. Substituting from (7.16d) into (7.16b) and
then into the frequency equation (7.14), we finally arrive at, after a series
of tedious manipulations,

A= Al + iAz =0
where:

Ay =cp {2 [3p2q2- q4- cz(p2+ qz) + 4c4] + (pz- 3q2- 4c2)n } cos p sinh g

' 2 2
+cq {2 [p*- 3p%q%- 2%+ ¢ - 4c*] - (3p%- ¢~ 4cH1 ] sin p cosh g

2

+ pq {[(P>+aD) (4~ pP+ 2¢%)] + %+ ¢ } sin 2c

22 2 2 2, 4
8, = {[p7a"(q"- p7) +c(p '+ g

+ [2p2q2- c2

2
4. 6pzq2) - 3c4(p2- q) - 4c6] (7.17)

2

(r - q2) + 4c4] M } sin p sinh g

22 .2,2 2 4 2 2 .2
+pq {2 [-p q"+ 3¢“(p°- q") - 7¢’] - [P"- q"- 2¢"] M } cos p cosh q

4 2

2,2 2 2 .2
- pq {[P4+ q + 2c“(q"- p7) + 2¢*7 - [p%- ¢®- 2¢%1 M } cos 2¢

For an assumed value of ¢ and given o and » = bnz, we may now find p and
q such that 5 = 8y = 0. Then, from equations (7.1l6e) the corresponding

values of F, B, and w, for a given n, may be computed.
The above method is an indirect one, as we do mot know, in advance, which

particular problem is being investigated. Moreover, if a computer is being
used to find values of p and q which satisfy Al = A2 = 0, it is then just as

easy to employ the direct method outlined in the previous section. However,

for small values of Coriolis forces, that is for sufficiently small ,/(g8‘/m),
one may reduce Eqs. (7.17) by neglecting the higher order terms in c and study
the effect of small Coriolis forces directly. This we shall discuss in the
following section.

7.2.5 The Effect of Small Coriolis Forces

We consider equation (7.17) and by neglecting 0(c)2 and higher order
terms obtain
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- 22 2 .2
Al-p{2[3pq-q4]+[p-3q]'ﬂ}c05psinhq
4 o, 22 2 .2
+q {2 [p-3p°q"] +[q"- 3p"] N } sin p cosh ¢q

+ 2pq {(qa- ot + o2+ 0% n}=0

(7.18)
A 2 2
2 = pq [(q°- p7) + 2M] sin p sinh q
+ [- 2P2q2' (Pz' q2)n] cos p cosh q
- % q* 6% Hm=o
where
(7.19)

The second equation in (7.18) is the frequency equationm for n = ®», (no
Coriolis forces [72]), and the first equation, to the first order of approxi-

mation in VTB'/n) 0(c), presents the effect of sufficiently small Coriolis
forces. We note that Al and A2 are both independent of ¢ and, therefore, we

may directly seek values of w and F which make them identically zero. This
is illustrated in Fig. 7.4 for o = 1.5, where the critical load is found to
be y = 1,67, In Fig. 7.5, the critical load y is plotted against o for suf-
ficiently small Coriolis forces (the dashed curve). The solid curve for
torsional flutter in this figure is for the limiting case of n = « [72]. We
note that the existence of Coriolis forces does not alter the region of di-
vergent motion, as is expected. However, it makes this region a closed set,
that is, in the presence of Coriolis forces, the points on the divergent curve
indicate neutrally stable states. The horizontal solid line in Fig, 7.5 de~
notes the limit of transverse flutter for mn = =, and the horizontal dashed
line indicates that limit for sufficiently small Coriolis forces [32], (for

2
EIxr /C1 1.5).

It may be of interest to obtain the critical values of y for § = « and
n =1, This, of course, provides the upper limit of torsiomal and transverse
flutter. The dotted curve in Fig. 7.5 represents this limiting case for §=1.
We note that transverse flutter, for B = » and n = 1, occurs at y = 47, which
is not shown in Fig. 7.5.

122



7.3 Stability of a Bar in Parallel Fluid Flow, Taking into Consideration
the Head Resistance

The problem of a cantilevered bar placed in a fluid flow was analyzed by
Kordas [88]. The head resistance was assumed to be represented by pure fol-~
lower force, which was not further related to any parameters of the bar or
the fluid, Piston theory [89] was assumed to characterize lateral pressure
on the bar. The continuous system was replaced by a system with two degrees
of freedom and stability limits in terms of relevant parameters of the problem
were calculated.

7.4 Stability of Bars Subjected to Radiant Heat

In a recent paper Augusti [90] has suggested a special construction of
the links of an articulated bar, which would make it sensitive to radiant
heat., The links are made up of cells; the heat absorbed by each cell causes
thermal deformations which induce a relative rotation of the two adjacent bars.
An interesting feature of the resulting equations, e.g., for a bar with two
degrees of freedom, is that derivatives of generalized coordinates (angles of
rotation) up to third order are introduced. Depending upon the combination
of relevant parameters, stability can be lost by flutter or by divergence.

Thermally induced vibration and flutter of flexible booms were discussed

by Yu [91] and commented on by Augusti [92], where further references to this
phenomenon can be found.
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CHAPTER VIII
LABORATORY EXPERIMENTS AND MODELS

8.1 1Introduction

As already mentioned, it is the intent to discuss in this monograph only
those problems involving follower forces which do not belong to the now almost
classical areas of aeroelasticity and stability of rotating shafts. If we
omit these two categories, the only two remaining areas of problems with
follower forces which have been realized to date involve internal flow through
flexible pipes and fluid jets impinging on a deformable structure.

As regards the former area, mention should be made above all of the pio-
neering work by Benjamin [80,93] on the dynamics of a system of articulated
cantilevered pipes conveying fluid in which both divergence and flutter were
observed and stability boundaries were determined analytically and also by
means of quantitative experiments. Benjamin's work was continued by Gregory
and Paidoussis [87,94] who studied theoretically and experimentally continuous
tubular cantilevers conveying fluid. One should also recall the earlier work
by Long [95] on vibration of a tube containing flowing fluid, who, however,
did not observe any instabilities, being interested only in the influence of
the fluid flow on frequencies of vibration. Divergence of a simply supported
pipe conveying fluid was observed more recently by Dodds and Runyan [96].
Simply supported and cantilevered pipes conveying fluid were investigated also
by Greenwald and Dugundji [97].

The dynamics and stability of slender cylinders surrounded by, rather
than containing, flowing fluid was studied analytically and experimentally by
Paidoussis [98-100]. He points out that, provided the flow direction coincides
with the axis of the cylinder at rest, then, for small motions about the position
of rest, the forces exerted by the fluid in the two cases of external and in-
ternal flow are closely similar. This becomes evident on considering that the
forces exerted by the fluid, excepting those due to fluid friction, in both
cases arise from lateral acceleration of the flowing fluild, caused by lateral
motion of the cylinder. 1In external flow, this acceleration is suffered by
the virtual or "associated" mass of fluid, which is dynamically equivalent to
the contained mass of fluid in internal flow. Hawthorne [101], taking advan-
tage of this similarity, investigated the stability of flexible tubes towed in
water and demonstrated that divergence instability is possible in such systems.

In this context it is deemed appropriate to mention some related but con-
siderably more complex hydro-elastic-pneumatic problems arising in structural
dynamics of launch vehicles studied by Runyan, Pratt and Pierce {1027, as well
as the broad area of propeller-rotor whirl flutter, a comprehensive review of
which was recently prepared by Reed [103].
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The mechanics of impinging jets was studied to date from the point of
view of fluid behavior, one of the goals being the determination of the pres-
sure distribution at a rigid surface. By contrast, in a recent study [104]
the interest centered on the behavior of a primarily elastic structure sub-
jected to an impinging jet. Quantitative experiments were carried out and
compared with theoretical predictions, as described in the following section.

8.2 Instability of a Mechanical System Induced by an Impinging Fluid Jet

8.2.1 General

The mathematical model of the physical system considered here may be
called Reut's problem, mentioned already in Sect. 6.2. It comsists of a can-
tilever with a rigid plate at its free end, which is normal to the axis. It
is subjected to a force, acting on the plate, which is always collinear with
the undeformed axis of the cantilever, Fig. 8.1, Bolotin [8] reports that
this problem was first posed by Reut in 1939 and solved by Nikolai in the same
year. In this context, Bolotin suggests that the force in Reut's problem may
be realized by an impinging jet of absolutely inelastic particles, since the
kinetic energy of the particles is completely absorbed upon impact. It appears,
however, that no attempt was ever made to follow up these suggestions, or to
realize Reut's problem in any other way. Bolotin also suggests that the
pressure from a jet of liquid or gas may induce such a force when the incli-
nation of the force, as the bar deforms, is neglected.¥®

In an attempt to comstruct models based on these ideas, it was disco-
vered that by covering the plate with screens of certain mesh sizes a problem
very close to the Reut's one may be realized. The resultant force, in this
case, has an inclination which can be controlled by a suitable arrangement of
screens of various mesh sizes; the point of application of the resultant force,
however, always lies on the axis of the undeformed cantilever. When this force
stays normal to the end plate, the system loses stability by divergence (attain-
ment of another equilibrium state); the force is conservative. On the other
hand, 1f the force stays collinear with the undeformed axis of the bar, the
loss of stability occurs by flutter (oscillations with increasing amplitudes);
the force is nonconservative. By controlling the inclination of the force,
various degrees of nonconservativeness may be attained.

The experimental results are obtained using a system with two degrees of
freedom, rather than a continuous cantilever., The applied force is induced by
an impinging air jet. The degree of nonconservativeness is controlled by em-
ploying suitable end attachments, resulting in either divergent or flutter-type
motions of the system. Also, the effect of viscous damping forces is investi-
gated, It is found that the experimentally obtained flutter load corresponds

rather closely to the theoretical prediction when small dissipative forces are

*
This, of course, is not acceptable, since it is precisely the presence
of the component of the force in the direction normal to the impinging fluid
that, in this case, renders the system conservative.
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included; this confirms the earlier findings that small damping forces may
have a destabilizing effect.

8.2.2 Description of Model and Supporting Equipment

The model consists of two like rigid rods, Fig. 8.2. One rod is elasti-
cally hinged to the first rod and free at the other end. The system is con-
strained to move in a horizontal plane, being supported by long, light wires.
Various rigid attachments can be placed at the free end of the second rod.

The attachment consists basically of a rigid flat plate covered with a combi-
nation of screens of various mesh sizes. This attachment is rigidly fixed

and mounted normal to the axis of the second rod. In the absence of any dis-
turbance, the system is in equilibrium when the two rods are collinear (undis-
turbed configuration).

A fixed nozzle is placed along the equilibrium axis of the system, one
inch away from the attachment, and an air jet is made to impinge upon the
attachment. The flow rate can be varied by means of a valve. The dynamic
pressure at the nozzle corresponding to a given flow rate can be read from a
dial gage.

It is observed that as the flow rate, and hence the force on the attachment,
is increased and passes a certain (critical) value, the system does not remain
in the undisturbed configuration. Stability is lost by either flutter (oscil-
lations with increasing amplitudes) or by divergence (buckling -~ the attain-
ment of another equilibrium state), depending on the nature of the attachment
used. If the attachment is a flat plate with a smooth surface (a flat sheet
of aluminum) facing the air jet, then the loss of stability occurs by diver-
gence, By contrast, flutter-type motion is observed if the attachment is a
plate with screens of certain mesh sizes placed on the surface that faces the
impinging fluid. The sequence of photographs in Fig. 8.3 illustrates the
flutter-type motion, while Fig. 8.4 depicts a buckled state (divergence). Fig.
8.5 and Table 2 present the numerical values for all the relevant properties
of the system.

The supporting equipment consists of a calibrating system which i3 used
to correlate the dynamic pressure, hence the flow rate, with the actual force
which acts on the system. Three square steel plates are placed horizontally
one above the other, and are separated and supported by sets of steel leaf
springs. The steel leaf springs connecting the two lower plates permit dis-
placement in only one direction, while those connecting the upper two plates
permit displacement only in the perpendicular direction. Two stages are thus
formed. The displacement of each stage is, with a high degree of accuracy,
proportional to the component of the force which acts along the direction of
the displacement. With the aid of a pair of strain gages attached to the steel
leaf springs, and using a compensating network, readings can be taken which are
proportional to the respective displacements of each stage. In this manner,
strain-gage readings can be related to the magnitude of the force acting on
the system.
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The supporting equipment just described is used to find the direction and
the magnitude of the force on the attachment when the dynamic pressure of the
impinging air jet at the nozzle is known. The attachment is mounted on the
top plate of the supporting stages and then subjected to the air jet at a
given angle of incidence, Fig. 8.6. The magnitude and the direction of the
resultant force corresponding to a given angle of incidence and for a given
dynamic pressure are thus obtained experimentally.

8.2.3 Theory

As already mentioned, the problem of a cantilever with a rigid cross plate
at its free end and subjected to a force which is always directed along the
initial, undeformed axis of the cantilever, was first posed by Reut in 1939.

It is essential to note that the applied force in Reut's problem is not attached
to a material point of the system, but rather to a line in space. In struc-
tural mechanics, boundary-value problems are commonly posed for surface trac-
tions which are connected to the material points upon which they act. As a
result, the difference between the displacements of the material points and

of the points of application of the forces disappears.

In the present problem, the force is induced by the action of an air jet
upon the end plate. It may be assumed that such an action is equivalent to a
resultant force whose point of application lies always on the axis of the un-
deformed system; that is, along the direction of the flow, This force continu-
ously disengages from the material point on which it is instantaneously acting.
This force is conservative only if it stays normal to the end plate as the
system deforms. In the subsequent analysis, we will denote this force by P
and the angle by which it rotates, as the system deforms, by o, .

We consider small lateral motions of the system as shown in Fig. 8.5.
The rigid bar, designated by I, is connected to the support by a rotational
spring of stiffness K, and carries at its other end a rotational spring of
stiffness Kz to which“is attached another rigid rod, designated as II. In ad-

dition, rods I and II are connected to two linear coil springs as shown in
Fig. 8.5. Since the displacement of the spring conmected to bar I is not
coupled with the motion of bar II, the stiffness Kl properly accounts for the

effect of this spring. The spring connected to bar II is located at a dis-
tance d2 from the center of the middle joint and has stiffness K3.

The inertial properties are represented by seven masses mj, j=1,2,...7,
and seven centroidal moments of inertia Ij’ i=1,2,...7. The mass of the end
rotational spring is denoted by m, , and that of the rod I is denoted by m, .
The central rotational spring has in effect two masses m, and m, which are
attached to the rods I and II, respectively. The mass of the rod II is mg

and m is that of the collar which fits the attachment having mass m.,.
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The distance between the centers of the end and the middle rotational
springs is denoted by zl, while the mass =, is at a distance Lz from the cen-

ter of the middle joint. The dimensions ay, bl’ and c, are the distances from
the center of the end joint to masses m, m,, and my, regpectively, while a,,
b2’ and cy designate the respective distances of m,, Mg, and L from the cen-
ter of the middle joint.

The two rotational springs were made of high tempered spring steel with

identical geometry and, therefore, they have small damping with, plausibly,
the same damping constant €. Since the attachment has a large surface area

which moves relative to the impinging air jet, an external linear damping with
congtant €y appears to be a reasonable representation of the corresponding

damping mechanism,
The magnitude of the force due to the impinging air jet is P, the direc-
tion of which encloses an angle o, with the undeformed axis. o is assumed

to be a constant which will be determined experimentally with the help of the
auxiliary equipment as described in Sect. 8.2.4. 9y and 9, are the respective

rotations of bars I and II from the initial straight position.

The following equations of motion are obtained by employing D'Alembert's
principle:

Ap1®p T APy F By @) F Byy®y *+ (G- PLyyy + (Cppt PLydy, = 0

(8.1)
8191 F 8998y + Byy@p F Byg®y F (Cypt PLydyy + (Chpt PLydg, = 0
where
A = (m,+ m_.+ m_ + )t 2+ m,a 2+ m,b 2+ m.,c 2+ I.+1I,+1
11 - @7 mgT mgT )Ly T md) Tmpb) Tmaey Y T 2 T s
Ay, = Ay = @ga,+ mgby+ mecyt mog,)0,
A22 = m4322+ m5b22+ m6c22+ m7L22+ 14+ 15+ I6+ 17
B., = e b 2+ 2¢
11~ 24 1
Big =By = &xl1ly €
2
Byy = 6l t+ €
2
= .2
Cpy = Kyt Kyt Kot @.2)
cont,
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Cig =€y = - Kyt Ky

2
022 = K2+ K3d2

Lydy

Undamped System - Flutter. Consider first the undamped case: i.e.,
€ = ) = 0. Then Bi = 0, Assuming solutions of the form

3
t

i
P = §1e w
9, = 62eiwt

where 1 = /-1, §1 and Qz are undetermined amplitudes, @ is an undetermined

frequency and t is the time variable, the associated frequency equation is

aw4 + bwz + ¢ =20
where
= _A 2
a = Aphnt 4y
b = 24;,Cyot APl (THe) - A Ploa = 4),C)5- 49,01+ 4)5P8
2 2
¢ = €y Phya = Ph a8 Hy)= CppPhiar = CpoBA i+ € Cpn Cpyon CooPh)

Flutter occurs if w is complex with a negative imaginary part. The
threshold (critical) value of P, called P, is obtained by setting

b2 - 4ac = 0

and is

2

Per 2 = ng- £2 22 J&Zkz-hkfg-4hzjm+-hjgz+ hmf
’ £°- 4hj £°- 4hj

where

£ = Apgt; (e - A foa + 4,0,

8 = 241,015 - A11Cpy = A55Cy,

2
h = A14, - A
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let

8.3)

(8.4)

(8.5)

(8.6)

8.7)

(8.8)
cont.



k = Cpp80 = Cpplq = Cyoby - Cppty

c,.? (8.8)

m = Cy1Cyp - €5

As the value of P is increased, flutter will occur when P becomes equal
to the lower value of P,. Note that P, is a function of o through equations
(8.8). P, exists only when the argument of the square root in Eq. (8.7) is

nonnegative.

Damped System - Flutter. Using an assumed solution of the form (8.3) in
Eqs. (8.1) results in the following determinant which is set equal to zero for

a nontrivial solution:

2
- WAy +Cpy - PLy +iuBy,

2
- WA, +PL.ax+C + 1B
12 1 12 12 =0 (8.9)

2
T WAt Gy Py + LuBy,

2
- w A22 + Pzza + sz + inzz

I1f we neglect the product of € and €, in the expansion of (8.9), we

obtain two equations by separating the real and imaginary parts. The first
equation is the same as equation (8.4). The equation resulting from the
imaginary part yields the following relation:

(8.10)

G2 - P11 PhaiCap) ¥ By Gy Rhy) BBy () + 26,1
AjpByy * A11Byy - 24158y,

Substituting wz from Eq. (8.10) into Eq. (8.4) and denoting by Pd the thresh-

old values of P for this case, we obtain

u 1 2
Pd1 ) - 2% + Y " 4wv (8.11)
t]
where
u,z.ll_-.é;+93:_ﬁ'+k (8.12)
cont.
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2 8
s
h 2 £
v+ 2+ (8.12)
)
and
q = £(3ex - 2)
r= (1 + 2@)022 + (1 + e)Cll - 2012(1 - @) (8.13)
s = (1 + Ze)A22 + (1 + G)All - 2A12(1 - g)
where

2
€= ¢1/32£ and ¢ = zl =] lz (8.14)

Thus, the critical force depends not only on ¢, but also on ¢, essentially
the ratio of the damping coefficients. The critical force is the lower of the
two values of Pd and it exists only when the argument of the square root in

Eq. (8.11) is nomnegative.

Divergence. For divergence, or buckling, w is set equal to zero in Eq.
(8.4). The condition is then

c=0 (8.15)

Denoting the value of P at which this occurs by Pb, we have

k 1 } 2
Pb = - E—J':bz—j k™= 4im (8.16)

1,2
where j, k, and m are defined by Eqs. (8.8).

As are P, and P_, Pb is also a function of ¢, but it is independent of

the mass distribution. Pb exists only if kz - 4im 2 0,

Results. With the system parameters given, including the spring constants,

which are determined experimentally (see Sect. 8.2.4), Eqs. (8.7), (8.11), and
(8.16) must be solved for P for each specified value of o. This repetitious
task was performed with the aid of a CDC 3400 computer.

As can be seen in Fig. 8.5, for o = 0, the force P is always directed
along the equilibrium line; i.e., the line defined by P =Py = 0. When o=1,
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the force is always perpendicular to the surface of the attachment., As dis-
cussed earlier, in the former case the force is nonconservative, while in the
latter it is conservative, It turns out that with the present setup, experi-
mentally realizable o« are in the range 0.23 < ¢ < 0.91.

Unfortunately, mechanical failure of the joints occurred during the ad-
vanced stage of experimental measurements and, consequently, when the model
was reassembled, the spring constants K,, » and K, changed, Thus it became
necessary to designate the previous mode€l by system™ I and the reassembled mo-
del by system II. With due respect to the difference in system parameters,
stability curves, P versus «, are shown in Figs. 8.12 and 8.13,

8.2.4 Experimental Procedure and Results

Correlation of Force With Air Pressure and Determination of w. To find
the magnitude and the direction of the force acting on the attachment due to
a given airflow rate, the supporting equipment described in Sect. 8.2.2 is
used.

The nozzle assembly is detached from the model and mounted adjacent to
the calibrating device, Fig. 8.6, parallel to the direction of motion of one
of the stages. The rigid attachment is separated from the model and mounted
on a special bracket on the top plate of the calibrating stages. This bracket
may be rotated so that the angle between a normal to the attachment and the
center line of the nozzle, namely ¢j, may be varied. Markings are provided
for Py = 0, 5, 10, 15, 20, 25, and 30 deg.

The first step is to find a relation between the displacement of the
stages and the force applied to the top plate. This is done by applying knowm
forces along the deflections of each stage and noting the strain-gage readings.
If the direction parallel to the nozzle is designated by x and the perpendi-
cular direction by y, relations of the form

P = S_Ae
x 1= (8.17)

P

S,Ae
y 27y

may be written. Px and Py are the forces, and Ae and Aey are the differences
in strain-gage readings between no load and full load, for the x and y-direc-

tions, respectively. S1 and S2 are the proportionality constants.

The next step is to correlate the force, P, with the air pressure, p.
From the free-body diagram of the attachment mounted on the calibrating sys-
tem, Fig. 8.7, the following relations are obtained:

P _(p) = P(p) cos a(p)y,
(8.18)
Py(P) = P(p) sin a(p)y,
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where the force P has been split into its components Px and Py’ which are

functions of the pressure, p. The parameter « is assumed to be a function
of p also. From Eqs. (8.18) we can write

P
arctan [;x (p)] = d(P)¢2 (8.19)
x

For a given attachment and angle ¢2, strain-gage readings are taken for
a set of pressures. These in turn yield the forces Px and Py corresponding
to each pressure. The angle of incidence, 9y is then varied from 0-30 deg
in 5-deg increments and for each value of ¢, an average value for Py/Px is
obtained over a range of pressures p. It turns out experimentally that Px
and Py are linear functions of p, as one would expect, and thus the ratio
Py/Px is independent of p. This means that ¢ must be independent of p because
of Eq. (8.19). If arctan Py/Px is plotted versus Pys the result is (very
nearly) a straight line and, therefore, the slope may be interpreted as o in
Eq. (8.19). « is a constant for a given attachment,

The critical force is read, or interpolated as the value of P_at o, = 0
corresponding to the critical value of pressure. For small 9,5 P kﬁPx; this
is within the scope of the linearized theory.

In this manner, the value of o is obtained experimentally for each at-
tachment,

Determination of Stiffnesses.

Dynamic Method. The spring constants Kl, Kz, and K3 may be determined

experimentally by a simple dynamic analysis of various motions of the system.
The spring comstant Kl associated with the end joint and the linear spring

attached to bar I may be evaluated by locking the middle joint so that the
two bars move as a rigid unit, Fig. 8.8. After giving a small disturbance,
the natural frequency is measured from which Kl is determined. In a similar

manner, the spring constant Kz of the middle joint may be determined by lock-
ing the end joint, removing the linear spring attached to bar II and allowing
the system to ogcillate freely, Fig. 8.9.

Spring constant K3 can be found if K2 is known. The linear spring is

attached to bar II in its original position and the natural frequency is meas-
ured. This gives an expression for the combined stiffness from which K3 may

be evaluated.

134



Static Method. An alternate procedure is to use a static method where-
by forces are directly applied and the resulting deflection measured. The
procedure is divided into three steps and is explained in Figs. 8.10 and 8.11.

Theoretically, these two methods should yield identical results. Experi-
mentally, the results of the two methods differed slightly, Table 2, The sta-
tic measurement is to be preferred because the dynamic method depemds upon the
square of experimentally measured frequencies which are not known with great
accuracy.

Summary and Results., The basic steps in the experimental procedure are
as follows: First, choose an attachment and mount it on the model., Raise
the air pressure slowly from zero and note the critical pressure at which the
system starts exhibiting amplified oscillations (flutter) or shows a static
loss of stability (buckling). The supporting equipment is then used to find
o and to find the force P corresponding to the critical pressure p. The
spring constants are then determined experimentally for use in the theoretical
analysis.

When choosing attachments, it is desirable that they all be of about the
same welght and that a wide range of o be covered more or less uniformly. A
wide variety of screens and sandpapers were weighed and combinations were
chosen that met these requirements, The values of ¢ which were experimentally
realized lie in the range 0.238 to 0.913, the latter being for an attachment
consisting of a smooth flat plate.

In Figs., 8.12 and 8.13, the experimental results are shown together with
the theoretical curves, As was mentioned, two systems had to be considered
because of a mechanical failure of the joints. For each experimental run a
point of instability is drawn on the diagram at the corresponding « and P,

A & 1is used for a flutter point, while @ is used to denote divergence.
The measurements are labeled 1 through 8 for system I and 1 through 12 for
system II.

Table 3 summarizes the experimental and theoretical results and provides
a comparison between these results.

8.2.5 Discussion of Results, Conclusions and Recommendations

The results of this study are summarized in Figs. 8.12 and 8.13 and in
Table 3. It is noted that the experimentally determined critical points lie
somewhat below the theoretical stability curves for undamped flutter and di-
vergence. In the discussion which follows, the possible reasons for this
discrepancy are explored.

One of the primary reasons for the discrepancy between the theoretical
stability curve for undamped flutter and the experimentally observed points
of flutter appears to lie in the fact that damping is present in the physical
system., The damping mechanism assumed in the analysis has already been dis-
cussed. Stability curves for flutter with small damping taken into account
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are shown in Figs. 8.12 and 8.13 for several values of the damping ratio ¢.
It is seen from these figures that in the presence of damping the theoretical
stability curves come to pass very near the experimental points. No attempt
was made to determine ¢ with a high degree of accuracy since the assumed
damping mechanism, while reasonable, was chosen mostly for its simplicity

and it is doubtful that it represents completely the actual damping in the
system. Supplementary experiments indicated that the assumed values of ¢ are
realistic,

The results presented indicate that damping has a destabilizing effect on
the system and that the presence of damping extends the flutter region to
higher values of ¢. Also, the lower values of the damping ratio are associ-
ated with lower values of flutter loads and a wider flutter range. This con-
firms results shown previously in Chapter IV,

The theoretical curves bounding the regions of flutter (with and without
damping) and divergence were found to be rather insensitive to small changes
in system parameters, as indicated in Table 2, with the possible exception of
the spring constants. The dynamic measurement of the spring constants pro-
vides another possible source for the discrepancy since the calculation de-
pends on the square of a measured quantity; i.e., the frequency of free oscil-
lations. But, the spring constants were determined also using the static
method previously described, Difficulties may arise here, however, in measur-
ing the applied force by means of hanging weights on a light string which
passes over an air bearing,

Since the two methods of measuring the spring constants gave somewhat
different results, Table 2, it was decided to investigate the effect of a 5
percent difference in either Kl, K2, or K3. A computer program was written

in which each calculated spring constant was subjected to a £ 5 percent un-
certainty. If an envelope is drawn about the nine curves thus obtained, the
effect is roughly to give a maximum error of + 6 gm (or * 4 - 10 percent).

No other system parameter, Table 2, is subject to an error approaching 5 per-
cent, except possibly the moments of inertia, but these are insignificant when
compared to the mass-times-distance-squared terms to which they are added.

The observed discrepancy between the theoretical curve for divergence and
the experimental points may be due also, in part, to the uncertainty in the
values of the spring constants, but the major cause of error seems to lie in
the possibility of initial imperfections and nonlinear effects.

Since the physical model is not an ideal linear system free of imper-
fections, there is no single, sharply defined divergence load. An arbitrary
criterion of the load required for a one-inch deflection of the middle joint
was used as the condition for divergence., By this definition, the experimen-
tal points of divergence were somewhat below (15-25 percemnt) the divergence
curves obtained from the linear amalysis, Figs. 8.12, 8.13, and Table 3. 1In
an attempt to explain this discrepancy it seems advisable to investigate the
nonlinear divergence theory as well as the effects of initial imperfections.
This is discussed in detail in the next section for ¢ = 0.717 (run 11).
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The results of this investigation are shown in Fig. 8.14, with a detailed
description of the curves given in Sect. 8.2.6. It is noted that the postu-
lated criterion for divergence gives very nearly the same load for both the
linear (curve A) and the nonlinear (curve B) cases, and thus the theoretical
divergence curves given in Figs., 8.12 and 8.13 actually represent the diver-
gence loads for the nonlinear theory in conmjunction with the adopted criterion.

The strong effect of imperfections on the divergence load is discussed in
Sect. 8.2.6, Initial imperfections in the amount P10 = 0.01, Ppo ™ - 0.01, as

shown in curve D, are indeed reasonable for this model. This corresponds to
a no-load deflection of about 0.1 inch at the middle joint. This small imper-
fection lowers the theoretical divergence load by about 15 percent.

Curve F is the experimental force-deflection curve for run l11. Note that
the shape of the curve differs somewhat from the theoretical curves shown., It
should be pointed out that the points used to draw this curve are rather dif-
ficult to obtain since holding the air pressure constant to obtain a deflection
reading does not prevent the motion of the model. Since the run of the curve
F is somewhat different from the other curves, the likelihood exists that
other sources for the discrepancy may be present., It may be appropriate to
mention here that it has been noted repeatedly in the past that structural
systems buckle at loads below those theoretically expected.

To provide better insight into the discrepancy under discussion, the ex-
perimental procedure was also scrutinized. The method of correlating the air
pressure as read on the dial gage, to the actual force on the attachment, was
studied with the conclusion that no appreciable error could be introduced.

8.2.6 Nonlinear Divergence Analysis

The equations of motion, assuming P and @, are not small, neglecting

tnertial effects, thereby restricting the equations to use for divergence ana-
lysis, and allowing for imperfections by assuming that the equilibrium confi-
guration is not a straight line, are

Koy - Ky(0,m @) - PAycos ap, sin g
+ K38, (£, sin g +d, sin ))cos @
+ P4, sin o, cos ¢ =0
_ (8.20)
K, (9~ ;) + P sin oy, [4, cos g,

+ tan @,(%; sin @, + £, sin qb)] + P4, cos ap, sin ¢

+ Kgd, (£ sin'@l +d, sin'ﬁh) cos E@ =0
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where P =P " P P TP " By and P10 and 9o are the no-load values
of 9 and Pys respectively,

Restricting the magnitude of Py and P by setting

3
sin @ =@, - @ /6

(8.21)
cos o, = 1~ (aqh)zlz
the equations may be written as polynomials of the form
3 3 2 2 2 2
Aoy T Aw T Ae9 T A 9t Ase s T A
+ A7(p1cp2 + Ascpl + qu)z + Alo = 0
(8.22)

3 2

3 2 2 2
Bioy” ¥ By F Byomp t Bie 9 t Byg * Bewy
+ B7cp1cpz + Bsq;I + Bgcpz + Blo = 0
A computer program was written to solve these two third-degree algebraic
equations simultaneously for various values of P, 9107 and Pog* The results
are given in Fig. 8.14 for o = 0.717 (run 11) in the form P versus @G- The
variation of g, with P is essentially similar. The vertical dotted line re-

presents the angle ) corresponding to one-inch deflection of the middle
joint, which is the buckling criterion used in this study.

Curve A represents the linear case for P90 = P20 = 0. No deflection

occurs until the buckling load is reached. Curve B represents the imperfection-
free nonlinear case where the approximations (8.21) are used. The buckling
loads predicted by curves A and B are rather close.

Curves C, D, and E are drawn for the values of P10 and P90 indicated.

Note that the buckling loads, as determined by the intersection of the re-
sponse curves with the dotted vertical line, depend significantly on the mag-
nitude of ¢, and q,,.

Curve I is the experimental response curve for the model with the attach-
ment used for run 11 (o = 0.717) in place.
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8.3 Demonstrational Models

Considerable insight into the possible types of dynamic behavior of
mechanical systems subjected to nonconservative forces may be gained not
only through quantitative experiments, but also by qualitative observations
of demonstrational models. A set of such models has been recently designed
and constructed at the Structural Mechanics Laboratory of Northwestern Uni-
versity [105], and it is intended to develop this set further at the Applied
Mechanics Laboratory of Stanford University. A brief description of the
models follows.

Model A

The model consists of two like rigld pipe-segments (Fig. 8.15a). The
first is elastically hinged to a fixed base, while the other is elastically
hinged to the first and carries a nozzle at the free end. 1In addition to
the elastic hinges, the stiffness of the system can be varied by means of
lateral, spiral springs. The system is constrained to move in a horizontal
plane, being suspended by lomng, light strings. A fluid can be conveyed through
the pipes, entering at the fixed end and leaving through the nozzle. In the
absence of the fluid, or for small rate of discharge, the pipes are at rest
and colinear, defining the equilibrium configuration., Two symmetrically pla-
ced strings in the horizontal plane are attached to the free end of the pipe
and pulled toward the fixed base at a small angle relative to the pipe axis.

It is observed that as the flow rate is increased, and passes a certain
(critical) value, the pipe system does not remaim in the undisturbed confi-
guration. The loss of stability occurs either by divergence or by flutter,
depending upon the stiffness of the auxiliary coil springs at the free end
and the tension in the wires. If the coil spring at the free end is suffici-
ently soft, or is removed, and the tension in the wires small, then the loss
of stability occurs by flutter-type motion. By contrast, for sufficiently
stiff coil springs, or for large enough tension in the wires, the system loses
stability by divergence (Fig. 8.15b).

In experimenting with this system, it was found that the system can ad-
mit two distinct critical flutter flow rates. One is associated with rela-
tively large initial disturbances and the other corresponds to small initial
perturbations. That is, for a certain range of flow rates, the system is
agsymptotically stable when disturbed by sufficiently small initial input of
energy, while it oscillates with increasing amplitude about the undeformed
axis for sufficiently large initial perturbations (loss of stability in the
large). Above this range the system loses stability by flutter for any ini-
tial disturbances (loss of stability in the small).

A thorough and systematic investigation (both amalytical and experimental)
of articulated pipes conveying fluid was presented by Benjamin [80,93]. The
model described here represents a generalization of Benjamin's system by in-
cluding a nozzle to control Coriolis forces, lateral springs to control ef-
fective constraints, and tension wires to control the direction of the resul-
tant forces acting at the free end. It appears that the existence of loss of
stability in the large was not observed before in such systems.
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Model B

This model consists essentially of a piece of a rubber tube, fixed at
one end and elastically restrained in the axial direction at the other end,
at which rotation is prevented, Fig. 8.,16. The tube is confined to move in
the horizontal plane, being suspended by means of long, light strings., A
fluid can be conveyed through the tube, entering at the fixed end. The other
end being closed, the fluid is ejected through two nozzles, placed at a cer-
tain distance from the fixed end symmetrically with respect to the tube in
the direction parallel to the tangent to the tube at that section. The
nozzles are mounted in a fixture which is made to slide on an air cushion,
The sleeve providing the sliding support at the elastically constrained end
is also supported by an air bearing. In Fig. 8.16 the tubes supplying air
for the bearings are seen on the left part of the photograph.

It is observed that the straight equilibrium configuration may be lost
if the flow rate of the air passing through the tube exceeds a certain cri-
tical value., Loss of stability can occur by either flutter or divergence,
depending upon the distance between the nozzles and the fixed end. It may
be remarked that by attaching a series of pairs of nozzles along the tube,
the problem of a bar subjected to disturbed tangential follower forces may
be realized.

Model C

This model consists of a cantilevered thin elastic strip at whose free
end a circular rigid plate is attached in a plane normal to the axis, Fig.
8.17. The surface of the plate can be varied by placing screens of differ-
ent mesh sizes. A nozzle whose axis is parallel to the axis of the strip
can be made to discharge fluid at a constant rate which impinges upon the
plate.

It is observed that as a certain critical flow rate is exceeded, the
cantilever may lose stability by either flutter or divergence, depending
upon the mesh size of the screen attached to the plate., Both torsional and
bending deformation are observed to occur for both types of loss of stabi-
lity, with torsional deformations becoming more pronounced with increased
eccentricity.

Model D

This model consists of a cantilevered thin elastic strip at whose two
longitudinal edges flexible tubes are attached through one of which fluid
at constant rate can be conveyed, entering at the fixed end and leaving
through the open end, Fig. 8.18a. The other tube does not convey any fluid
and is provided solely to decrease the asymmetry of the cross-section,

It is observed that as the flow rate exceeds a certain critical value,
the cantilever loses stability by bending-torsional flutter, Fig. 8.18b, It
is also observed that a certain range of flow rates restores the original
undeformed equilibrium configuration which may have been lost by lateral
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buckling caused by attaching a given weight at the free end. Fig. 8.18c shows
the buckled configuration at zero flow rate and Fig. 8.18d shows the restored

original equilibrium position, achieved with a certain flow rate. As the flow
rate is increased further beyond a certain value, stability is lost by flutter.

Model E

This model consists, as in the previous two cases, of a cantilevered
elastic strip at whose two longitudinal edges flexible tubes are attached.
A rigid pipe is placed along the transverse free edge and connected to the
longitudinal tubes, Fig., 8.19., Fluid is conveyed at a constant rate through
the longitudinal tubes, entering at the fixed end of the cantilever, and is
discharged through an end opening in the rigid pipe, whose other end is closed.

~ It is observed that as the flow rate is increased beyond a-certaim cri-
tical value, stability is lost by bending-torsional flutter. The system may
be considered as model of an aircraft wing with a jet engine at the free end.

Model F

This model consists of a rigid closed cylinder which can roll on a hori-
zontal plane. A pilece of a rigid pipe is attached to the cylinder by means
of an elastic hinge, which carries a nozzle at the free end, Fig. 8.20a,
Fluid can be conveyed into the cylinder by means of a flexible tube, which
then enters the pipe and is discharged through the nozzle.

It is observed that as the rate of discharge is increased beyond a cer-
tain value, the system acquires a (stable) equilibrium position such that the
pipe is vertical and its axis passes through the center of the cylinder, Fig.
8.20b. As the rate of discharge is increased further, another definite
(eritical) value is reached, beyond which the system begins to execute oscil-
lations with increasing amplitudes about the preceding equilibrium state
(flutter).

Model G

This model consists of a rigid cylinder, as in the previous model, which
can roll on a convex rigid cylindrical segment which in turn is fixed in a
concave rigid cylindrical segment, this latter being free to roll on a hori-
zontal plane, Fig. 8.2la. The rigid cylinder is closed at the end planes amd
is provided with an opening and a nozzle on the lateral surface, the axis of
the nozzle passing through the center of the cylinder. Fluid can be conveyed
through a flexible tube to the cylinder and is discharged through the nozzle.

It is observed that as the rate of discharge is increased beyond a certain
value, the system acquires a (stable) equilibrium configuration such that the
axis of the nozzle is vertical, Fig., 8.21b, As the rate of discharge is in-
creased further, another definite (critical) value is reached, beyond which
the system begins to oscillate with increasing amplitudes about the preceding
equilibrium state (flutter), Fig. 8.21c. If the convex cylinder segment on
which the cylinder rolls is replaced by a flat plate, Fig. 8.21d, no flutter
is observed.
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Model H

This model consists of a rigid pipe segment suspended by means of a
flexible tube and hanging in the vertical position, Fig. 8.22. The lower
end of the rigid pipe carries an attachment, the essential part of which
consists of two nozzles placed in a plane normal to the axis of the pipe
segment, parallel to each other. The flexible tube is connected to a fixed
base, Fluid can be conveyed through the flexible tube, entering the rigid
plpe segment and discharging through the nozzles in opposite directions,

It is observed that for any comnstant flow rate above a certain minimum
value, the rigid pipe begins to move like a spherical pendulum with monotoni-
cally increasing amplitude, which will approach a limiting value for a suf-
ficiently small flow rate. The minimum value of the constant flow rate which
produces the onset of the pipe motion is not sharply defined. It is further
observed that the same motion is initiated if the rigid pipe segment is made
very short as compared to the flexible tube, and vice versa,

The problem of a cantilevered bar subjected at the free end to a twist-
ing moment which rotates with the end cross-section of the bar was first
considered by Nikolai [2]. He found that the undeformed rectilinear equi-
librium configuration is unstable for any nonvanishing magnitude of the
twisting moment.

142



12,
13.

14.

15‘

REFERENCES

Ziegler, H.: Principles of Structural Stability. Blaisdell Publishing
Company (Waltham, Mass.), 1968.

Nikolai, E. L.: "On the Stability of the Rectilinear Form of a Compressed
and Twisted Bar" (in Russian), Izvest. Leningr, Politekhn. in-ta, vol. 31,
1928. (Reprinted in Selected Studies in Mechanics. Gos. Izdat, Techniko-
Teoretischeskoi Literatury, Moscow, 1955, pp. 357-387.)

Nikolai, E., L.: "On the Problem of Stability of a Twisted Bar" (in
Russian), Vestnik prikl. mat. i mekh., vol. 1, 1929. (Reprinted in
Selected Studies in Mechanics. Gos. Izdat. Techniko-Teoreticheskoi
Literatury, Moscow, 1955, pp. 388-406.)

Ziegler, H,: "Stabilitdtsprobleme bei geraden Stében und Wellen." ZAMP,
vol, 2, no. 4, 1951, pp. 265-289.

Ziegler, H.: '"Die Stabilit#tskriterien der Elastomechanik." Ingr.-Arch.,
vol. 20, no. 1, 1952, pp. 49-56.

Ziegler, H.: 'Linear Elastic Stability." ZAMP, vol, 4, 1953, pp. 89-184,

Ziegler, H.: 'On the Concept of Elastic Stability." Advances in Applied
Mechanics, vol. 4. Academic Press, 1956, pp. 351-403.

Bolotin, V. V.: Nonconservative Problems of the Theory of Elastic Sta-
bility (English translation). G. Herrmann, ed., Pergamon Press, 1963.

Garrick, I. E.: Aerodynamic Flutter. ATAA Reprint Series, 1969.

Herrmann, G.: ''Stability of Equilibrium of Elastic Systems Subjected to
Nonconservative Forces.'" Appl. Mech. Reviews, vol. 20, 1967, pp. 103-108.

Liapunov, A. M.: '"Probléme général de la stabilité du mouvement." Ann.
Fac. Sci. Toulouse, vol. 9, 1907, pp. 203-474 (French tramslation; re-
printed by Princeton University Press, 1952. Original paper published

in Comm. Soc. Math., Kharkov, 1893.)

Minorsky, N.: Nonlinear Oscillations. Van Nostrand Co., 1962.
Krasovskii, N, N.: Stability of Motion. Stanford University Press, 1963.

LaSalle, J.; and Lefschetz, S.: Stability by Liapunov's Direct Method
with Applications. Academic Press, 1961.

Hahn, W.: Theory and Applications of Liapunov's Direct Method.
Prentice-Hall (Englewood Cliffs, N. J.), 1963.

143



16.

17.

18.

19,

20,

21.

22.

23,

24,

25.

26.

27.

28.

29,

30‘

144

Magiros, D. G.: '"Stability Concepts of Dynamical Systems.'" Information
and Control, vol. 9, 1966, pp. 531-548.

Ziegler, H.: "Some Developments in the Theory of Stability." Proc.
Canadian Congr. of Appl. Mech., vol. 3, 1967, pp. 233-250.

Porter, B.: Stability Criteria for Linear Dynamical Systems. Academic
Press, 1968.

Sewell, M. J.: "On Configuration-Dependent Loading." Arch. Rat. Mech,
Anal., vol, 23, 1967, 327-351,

Nemat-Nasser, S.: '"On Local Stability of a Finitely Deformed Solid
Subjected to Follower Type Loads." Quart. Appl. Math., vol. 26, 1968,
pp. 119-129,

Shieh, R. C.; and Masur, E. F.: '"Some General Principles of Dynamic
Instability of Solid Bodies." ZAMP, vol. 19, 1968, pp. 927-941,

Herrmann, G.; and Bungay, R. W.: "On the Stability of Elastic Systems
Subjected to Noncomservative Forces." J. Appl. Mech., vol, 31, no. 3,
1964, pp. 435-440.

Bisplinghoff, R. L.; Ashley, H.; and Halfman, R, L,: Aeroelasticity.
Addison-Wesley Publishing Company, Inc. (Cambridge, Mass.), 1955.

Fung, Y, C.: An Introduction to the Theory of Aeroelasticity. John
Wiley and Sons, Inc. (New York), 1955,

Herrmann, G.; and Jong, 1.-C.: '"On the Destabilizing Effect of Damping
in Nonconservative Elastic Systems.," J. Appl. Mech., vol. 32, no. 3,
1965, pp. 592-597.

Burnside, W. S,; and Panton, A. W.: The Theory of Equations. Tenth ed.,
Dublin, Hodges, Figgis and Company (New York), 1935.

Herrmann, G.; and Jong, I.-C.: "On Nonconservative Stability Problems
of Elastic Systems with Slight Damping." J. Appl. Mech., vol, 33, no. 1,
1966, pp. 125-133.

Bottema, O,.,: "On the Stability of the Equilibrium of a Linear Mechanical
System," ZAMP, vol., 6, no. 2, 1955, pp. 97-104,

Nemat-Nasser, S,; and Herrmann, G,: 'Some General Considerations
Concerning the Destabilizing Effect in Nonconservative Systems." ZAMP,
vol, 17, no. 2, 1966, pp. 305-313,

Hedgepeth, J. M,; Budiansky, B.; and Leonard, R. W.: "Analysis of
Flutter in Compressible Flow of a Panel on Many Supports." J. Aeron,
Sci,, vol. 21, no. 7, 1954, pp. 475-486,



31.

32.

33.

3s5.

36.

37.

38.

39.

40,

41.

42,

43.

44,

Johns, D. J.; and Parks, P. C.: "Effect of Structural Damping on Panel
Flutter.,"” Aircraft Eng., Oct. 1960, pp. 304-308.

Nemat-Nasser, S.; Prasad, S. N.,; and Herrmann, G.: "Destabilizing
Effect of Velocity-Dependent Forces in Nonconservative Continuous
Systems." AIAA J., vol. 4, no., 7, 1966, pp. 1276-1280.

Beck, M,: '"Die Knicklast des einseitig eingespannten, tangential
gedriickten Stabes.'" ZAMP, vol. 3, 1952, pp. 225-228,

Leipholz, H.: "ber den Einfluss der Ddmpfung bei nichtkonservativen
Stabilit¥tsproblemen elastischer St&be." Ingr.-Arch., vol. 33, no. 5,
1964, ppo 308-321.

Leonov, M. Ya.; and Zorii, L., M.: "Effect of Friction on the Critical

" Load of a Compressed Rod." Soviet Physics-Doklady, vol. 7, no. 7, 1963,

pp. 611-613, (Translated from Doklady Akad. Nauk SSSR, vol, 145, July
1962, pp. 295-297.)

Bolotin, V. V.; and Zhinzher, N, I.: "Effects of Damping on Stability
of Elastic Systems Subjected to Nonconservative Forces." Int. J. Solids
and Structures, vol, 5, no. 9, 1969, pp. 965-989.

Zorii, L, M,: "On the Stability of a Bar Under a Nonconservative Load"
(in Russian). Inst., of Machine Science and Automation Sci. Notes, vol.
4, 1964, pp. 23-34,

Huang, N. C.; and Shieh, R, C.: ''Thermomechanical Coupling Effect on
the Stability of Nonconservative Elastic Continuous Systems." Int. J.
Mech. Sci., vol. 12, 1970, pp. 39-49.

Jong, I.,-C.: '"On Stability of a Circulatory System with Bilinear
Hysteresis Damping.” J. Appl. Mech., vol. 36, 1969, pp. 76-~82.

Leibowitz, M. A.; and Ackerberg, R. C.: "The Vibration of a Conducting
Wire in a Magnetic Field." Quart. J. Mech. Appl. Math., vol. 16, 1963,
pPp. 507-519.

Smith, T. E.; and Herrmann, G,: '"Stability of Circulatory Elastic
Systems in the Presence of Magnetic Damping.' Acta Mechanica, in print,.

Kiusalaas, J.; and Davis, H. E.: '"On the Stability of Elastic Systems
under Retarded Follower Forces." Int. J. Solids and Structures, vol, 6,
1970, pp. 399-409.

Thomson, W, T.; and Reiter, G, S.: "Jet Damping of a Solid Rocket:
Theory and Flight Results," AIAA J., vol, 3, 1965, pp. 413-417,

Herrmann, G.; and Nemat-Nasser, S,: "Instability Modes of Cantilevered

Bars Induced by Fluid Flow Through Attached Pipes.” Int. J. Solids and
Structures, vol, 3, 1967, pp. 39-52.

145



45.

46.

47'

48,

49.

50.

51,

52,

53.

54.

55.

56.

57.

58.

146

Herrmann, G.: 'Determinism and Uncertainty in Stability." Proc. IUTAM-
Symp. on Instability of Continuous Systems (Karlsruhe), Sept. 1969,
Springer-Verlag, in press.

Koiter, W. T.: "The Concept of Stability of Equilibrium for Continuous
Bodies.” Proc. Koninkl, Nederl, Akademie van Wetenschappen, Ser. B,
vol, 66, no. 4, 1963, pp. 173-177.

Koiter, W, T.: "The Energy Criterion of Stability for Continuous Elastic
Bodies." Proc. Koninkl. Nederl. Akademie van Wetenschappen, Ser. B.
vol, 68, 1965, pp. 178 and 190,

Nemat-Nasser, S.; and Herrmann, G.: '"On the Stability of Equilibrium of
Continuous Systems."” Ingr.-Arch., vol. 35, no. 1, 1966, pp. 17-24.

Vulikh, B. Z.: Functional Analysis for Scientists and Technologists
(English translation). I. N. Sneddon, ed., Pergamon Press, 1963.

Movchan, A, A.: "The Direct Method of Liapunov in Stability Problems of
Elastic Systems" (English translation). J. Appl. Math, Mech., vol. 23,
1959, pp. 686-700.

Shield, R. T.; and Green, A, E.: "On Certain Methods in the Stability
Theory of Continuous Systems." Arch, Rat, Mech., Anal., vol. 12, 1963,
PP. 354-360.

Mikhlin, S. G.: The Problem of the Minimum of a Quadratic Functional.
GITI (Moscow), 1952,

Nemat-Nasser, S.: "On the Stability of the Equilibrium of Nonconservative
Continuous Systems with Slight Damping." J. Appl. Mech., vol. 34, no. 2,
June 1967, pp. 344-348.

Prasad, S. N.; and Herrmann, G.: "Complex Treatment of a Class of Non-
conservative Stability Problems." Developments in Theoretical and Applied
Mechanics (Proc. Fourth Southeastern Conf., on Theor. and Appl. Mech., New
Orleans, La.), vol. 8, D, Frederick, ed., Pergamon Press, 1970, pp. 305-
318,

Hsu, C. S.: '"Dynamic Stability of Autonomous and Continuous Elastic
Systems." Rept. No. AM-66-3. Div. Appl. Mech., Univ. of California,
Berkeley, 1966.

Knops, R. J.; and Wilkes, E. W.: '"On Movchan's Theorems for Stability
of Continuous Systems." Int. J. Eng. Sci,, vol. 4, 1966, pp. 303-329.

Walker, J. A.: "On the Stability of Linear Discrete Dynamic Systems."
J. Appl. Mech., vol. 37, no. 2, June 1970, pp. 271~275.

Chetaev, N. G.: The Stability of Motion. Pergamon Press, 1961.



59.

60.

61.

62,

63.

64.

65.

66.

67.

68.

69.

70.

71.

LaSalle, J, P,: "Some Extensions of Liapunov's Second Method." IRE
Trans, on Circult Theory, Dec. 1960, pp. 520-527,

Leipholz, H.: “Anwendung des Galerkinschen Verfahrens auf nichtkonser-
vative Stabilitdtsprobleme des elastischen Stabes." ZAMP, vol. 13, 1962,
pp. 359-372.

Leipholz, H.: niber die Konvergenz des Galerkinschen Verfahrens bei
nichtselbstadjungierten und nichtkonservativen Eigenwertsproblemen.”
ZAMP, vol. 14, 1963, pp. 70-79.

Leipholz, H.: 'Die Knicklast des einseitig eingespannten Stabes mit
gleichmiissig verteilter, tangentialer L&ngsbelastung." ZAMP, vol. 13,
1962, pp. 581-589.

Leipholz, H.: "liber die Zuldssigkeit des Verfahrens von Galerkin bei
linearen, nichtselbstad jungierten Eigenwertsproblemen." ZAMP, vol. 16,
1965, pp. 837-843,

Leipholz, H.: ‘“Uber die Konvergenz des Galerkinschen Verfahrens bei
nichtkonservativen Stabilitdtsproblemen von Platten und St&ben." ZAMM,
vol. 45, (GAMM-Tagung), 1965, pp. 127-129,

Leipholz, H.: "Grundziige einer Stabilit&tstheorie filir elastische Systeme
unter nichtkonservativer Belastung." 1Ingr.-Arch., vol. 34, no. 1, 1965,
PP. 56-68.

Levinson, M,: "Application of the Galerkin and Ritz Methods to
Nonconservative Problems of Elastic Stability." ZAMP, vol. 17, 1966,
PP. 431-442,

Marchenko, G. A.: "Ritz Method in Nonconservative Problems of Elastic
Stability Theory" (in Russian). Aviatsionnaia tekhnika, vol. 3, 1966,
pPpP. 62-68.

Leipholz, H.: "{ber die Befreiung der Ansatzfunktionen des Ritzschen
und Galerkinschen Verfahrens von den Randbedingungen." Ingr.-Arch.,
vol. 36, no. 4, 1967, pp. 251-261.

Morse, P. M.; and Feshbach, H.: Methods of Theoretical Physics., Pt. I.
McGraw-Hill Book Co., Inc., 1953, pp. 298-299.

Tasi, J.; and Herrmann, G.: "Thermoelastic Dissipation in High-Frequency
Vibrations of Crystal Plates." J, Acoust, Soc. Am,, vol. 36, 1964, pp.
100-110.

Herrmann, G.; and Nemat-~Nasser, S.: "Energy Considerations in the
Analysis of Stability of Nonconservative Structural Systems.' Dynamic
Stability of Structures (Proc. Int., Conf., Evanston, Ill.), G. Herrmamn,
ed., Pergamon Press, 1967, pp. 299-308,

147



72,

73.

74,

75.

76.

77.

78.

79,

80,

81.

82,

83.

84.

148

Nemat-Nasser, S.; and Herrmann, G.: "Torsional Instability of Cantilevered
Bars Subjected to Nonconservative Loading." J. Appl, Mech., vol., 33, 1966,
Pp * 102' 104 .

Como, M.,: "Lateral Buckling of a Cantilever Subjected to a Tramsverse
Follower Force,"” Int, J. Solids and Structures, vol. 2, 1966, pp. 515-523,

Ballio, G.: "Sistemi aggiunti in problemi di stabilita elastica in campo
non conservativo." Rendiconti dell'Istituto Lombardo di Scienze e Lettere,
vol. 101, 1967, pp. 331-360.

Flax, A. H.: "Aercelastic Problems at Supersonic Speed." Proc. Second
Int. Aeronautical Conf. (New York), sponsored by the Inst. Aeron. Sci.
and Royal Aeron, Soc., 1949, pp. 322-360.

Prasad, S. N.; and Herrmann, G.: ''The Usefulness of Adjoint Systems in
Solving Nonconservative Stability Problems of Elastic Continua." Int.
J. Solids and Structures, vol, 5, no. 7, 1969, pp. 727-735.

Roberts, P, H.: '"Characteristic Value Problems Posed by Differential
Equations Arising in Hydrodynamics and Hydromagnetics." J, Math. Anal,
Applic., vol. 1, 1960, pp. 195-214,

Nemat-Nasser, S.; and Herrmann, G.: '"Adjoint Systems in Nonconservative
Problems of Elastic Stability." AIAA J,, vol. 4, 1966, pp. 2221-2222,

Ballio, G.: "Formulazione variazionale del problema dell’asta caricata
in punta da forze non conservative," Costruzioni Metalliche (Milano),
no. 4, 1967, pp. 258-264.

Benjamin, T. B.: 'Dynamics of a System of Articulated Pipes Conveying
Fluid, Part I." Proc. Roy. Soc. A, (London), vol, 261, 1961, pp.
457-486.

Como, M.: "Del metodo dell'energia nella stabilitd dei sistemi elastici
soggetti a forze posizionali conservative e non conservative.'" No. 226,
Universita degli studi di Napoli,Quaderni di Teoria e Tecnica delle
Strutture, Aug. 1966.

Nemat-Nasser, S.,; and Roorda, J.: '"On the Energy Concepts in the Theory
of Elastic Stability.” Acta Mechanica, vol. 4, no. 3, 1967, pp. 296-307.

Roorda, J.; and Nemat-Nasser, S.: 'An Energy Method for Stability Analysis
of Nonlinear Nonconservative Systems," AIAA J., vol. 5, no. 7, 1967, pp.
1262-1268.

Herrmann, G.; and Nemat-Nasser, S,: ‘''Instability Modes of Cantilevered
Bars Induced by Fluid Flow Through Attached Pipes." 1Int. J. Solids and
Structures, vol, 3, 1967, pp. 39-52,



85.

86.

87.

8s8.

89,

90.

91.

92.

93,

9.

95.

96.

97.

Lin, K., H.; Nemat-Nasser, S.; and Herrmann, G.: '"Stability of a Bar
under Eccentric Follower Force." J. Eng. Mech. Div,, ASCE, vol. 93,
no. EM4, Aug. 1967, pp. 105-115.

Timoshenko, S.; and Gere, J.: Theory of Elastic Stability. McGraw-Hill
Book Co., Inc., 1961.

Gregory, R. W.; and Paidoussis, M, P,: "Unstable Oscillation of Tubular
Cantilevers Conveying Fluid. Part-I." Proc. Roy. Soc, A, (London),
vol, 293, 1966, pp. 512-527,

Kordas, Z.: ''The Stability Problem of a Bar in Parallel Fluid Flow,
Taking into Consideration the Head Resistance,"” Polska Akad. Nauk,
Nauk Technicznych Bull,, vol. 13, no. 5, 1965, pp. 267-276.

Ashley, H.; and Zartarian, G.: "Piston Theory - A New Aerodynamic Tool
for the Aeroelastician.," J. Aeron. Sci., vol, 23, no. 12, 1956, pp.
1109-1118,

Augusti, G.: "Instability of Struts Subject to Radiant Heat.'" Meccanica,
vol. 3, no. 3, 1968, pp. 1-10.

Yu, Y. Y.: "Thermally Induced Vibration and Flutter of a Flexible Boom."
J. Spacecraft, vol. 6, no, 8, 1969, pp. 902-910.

Augusti, G.: '"Technical Comment on 'Thermally Induced Vibration and
Flutter of Flexible Booms.'" J. Spacecraft Rockets, to be published.

Benjamin, T, B.: 'Dynamics of a System of Articulated Pipes Conveying
Fluid. Part II." Proc. Roy. Soc. A, (London), vol, 261, 1961, pp.
487-499,

Gregory, R. W.; and Paidoussis, M. P.: '"Unstable Oscillation of Tubular
Cantilevers Conveying Fluid, Part IL." Proc. Roy. Soc. A, (London),
vol. 293, 1966, pp. 528-542.

Long, Jr., R, H.: "Experimental and Theoretical Study of Transverse
Vibration of a Tube Containing Flowing Fluid." J. Appl. Mech., vol. 22,
no, 1, 1955, pp. 65-68.

Dodds, Jr., H. L.; and Runyan, H, L.: "Effect of High-Velocity Fluid
Flow on the Bending Vibrations and Static Divergence of a Simply Supported
Pipe." NASA TN D-2870, 1965.

Greenwald, A, S.; and Dugundji, J.: '"Static and Dynamic Instabilities of

a Propellant Line." ASRL, Tech., Rept, 134-3, Massachusetts Inst. of
Technology, May 1967.

149



98.

99,

100.

101,

loz.

103,

104.

105,

106.

107.

108.

150

Paidoussis, M. P,:  '"Vibration of Flexible Cylinders with Supported
Ends, Induced by Axial Flow." Proc. Thermodynamics and Fluid Mechanics
Conv, (Liverpool). The Institution of Mechanical Engineers (London),
1966, pp. 268-279.

Paidoussis, M. P.: '"Dynamics of Flexible Slender Cylinders in Axial
Flow. Part I. Theory." J. Fluid Mech., vol. 26, pt. 4, 1966, pp.
717-736.

Paidoussis, M. P.: "Dynamics of Flexible Slender Cylinders in Axial
Flow, Part 1I. Experiments." J, Fluid Mech., vol. 26, pt. 4, 1966,
PP- 737'751-

Hawthorne, W. R.: '"The Early Development of the Dracone Flexible Barge."
Proc. Inst. Mech, Engrs. (London), vol, 175, 1961, p, 52,

Runyan, H. L.; Pratt, K. G.; and Pierce, H. B.: '"Some Hydro-Elastic-
Pneumatic Problems Arising in the Structural Dynamics of Launch Vehicles."
[Preprint] 65-AV-27, Nat. Conf. of the Aviation and Space Div., ASME

(Los Angeles, Calif.), May 1965,

Reed III, W, H,: "Review of Propeller-Rotor Whirl Flutter." NASA TR
R-264, 1967.

Feldt, W. T.; Nemat-Nasser, S,; Prasad, S. N.; and Herrmann, G.:
"Instability of a Mechanical System Induced by an Impinging Fluid Jet."
J. Appl. Mech., vol. 36, no., 4, 1969, pp. 693-701.

Herrmann, G.; Nemat-Nasser, S,; and Prasad, S. N.: 'Models Demonstrating
Instability of Noncomservative Mechanical Systems." Tech. Rept. No. 66-4,
Str. Mech. Lab,, Northwestern Univ., June 1966,

Parks, P, C.: '" A New Look at the Routh-Hurwitz Problem using Liapunov's
Second Method." Bull. de 1'Académie Polonaise des Sciences, vol. 12,
no. 6, 1964, pp. 19-21.

Hermite, C.: '"Sur le nombre des racines d'ume équation algébrique
comprise entre des limites données.”"” J. reine angew, Math., vol. 52,
1854, pp. 39-51.

Wang, P, K. C.: "Theory of Stability and Comtrol for Distributed
Parameter Systems - a Bibliography." Int. J. Control, vol., 7, 1968,
pp. 101-116.



GALERKIN APPROXIMATION:

TABLE 1

COMPARISON BETWEEN THE EXACT SOLUTION AND THE TWO-TERM
SMALL VELOCITY-DEPENDENT FORCES

Yy = F2/TT2

B ! ° Bract | Colereis
0.0 1.0 0.0 2,035 2.035
1.0 0.0 0.0 1.780 1.768
0.0 0.0 1.0 1,107 1.082
1.0 6.0 1.0 1.462 1,447
2.5 0.0 1.0 1.73 1.729
5.0 0.0 1.0 1.92 1.924
0.6” 1.0 1.0 V 1.155 1.133
1.0A 1.6 - i.O 1.483 1.469
] _2.5 i.éii 7 1.0 1.735 1.738
5;6 1.0 1.0 1.925 1.926
- 0:04 10:0 o 1.0 1.426 1.414
- 1;0 16.60 1.0 7;;618 1.611
_~_2.5 16:6 - 1.0 7 1.795 1.794
o ;.0 10.8 o 1.0 1.935 1,940
0.0 100.0 1.0 1.895 1.902
_1.0 100.0 1.0 1.926 1.930
;.5_7 IBO.b - 1.0 1.960 1.964
5.0 100.0 1.0 1.996 2.000
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TABLE 2

SYSTEM DATA
- - Centroidal
moment of
Dimensions Part Mass ipertia
(cm) L (gm) (em: cmZ2
a; = 0.692 1 10.20 ~0
bl = 16.3 2 22,0 1655
¢ = 31.9 3 42,1 ~0
a, = 0.692 4 10.20 ~ 0
b2 = 16.3 5 22.0 1655
c, = 32.3 6 3.2 ~0
d2 = 25.3 7 43.5 771
1,1 = 32.4
L, = 32.6
Spring constants Dynamic method Static method
System I K1 5.70 x 106 dyne-cm -
K2 9.12 x 105 dyne‘°cm
Ky 3.50 x 102 dyne/cm cee
System II Kl 5.34 x 106 dyne-cm 5.45 x 106 gmecm
K2 9.02 x 105 dyne-cm 9.41 x 106 gme-cm
Ky 3.35 x 102 dyne/cm 3.53 x 102 gm/cm
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10

11

12

TABLE 3

SUMMARY OF NUMERICAL RESULTS

SYSTEM 1 SYSTEM 11
Experi- Theoretical % Experi- Theoretical %
mental error mental error
o * Pcrit 1 2 3 * Pcrit 1 2 3
— (am) (gm) (em) (gm) — () (em) (gm) (gm)
0.343 F 56,4 72 55 ... + 2.5 F 70.2 89 62 ,,. +12.9
0.327 F 55.2 70 55 ... +0.3 F 69.7 8 62 ... +11.1
0.560 B 94.9 .. .o 124 23,4 B 118.3 .. .. 140 -15,1
0.368 F 57.2 73 55 ... + 3.8 F 75.7 90 63 ... +19.2
0.548 B 99.9 .. .. 125 -20.1 B 1ll6.0 .. .s 140 -17.0
0.913 B 95.9 .. .. 117 -18.0 B 111.9 .. .. 130 -13.8
0.533 B 97.9 .. e 125 -21.7 B 110.2 .. .» 140 -21.3
0.346 F 58.8 77 55 ... +6.9 F 69.8 89 62 ... +1ll.4
0.454 F 77.0 .. 66 ... +16.7
0.320 F 70.2 87 62 ..., +12.9
0.717 B 105.0 .. .e 135 -14.8
0.238 F 69,7 83 62 ... +12.4

* Observed loss of stability:

1 Undamped flutter.

2 Damped flutter, ¢ = 5.0,

3 Buckling.

F = flutter, B = buckling.
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Fig. 1.1 Column under compressive eccentric load
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N
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Fig, 1.2 Equilibrium curves of a centrally loaded column
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Fig., 3.1 Two-degree-of-freedom model
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Fig. 3.2 Load versus frequency curves for particular values
of parameter o in the range 0 <o <1

-3

9'2 = wz-nﬁz |



UNSTABLE

STABLE

UNSTABLE <

STABLE

Fig. 3.3 Detall of load versus frequency curve for o = 0.5,
illustrating multiple ranges of stability and
instability
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Plain area: flutter may occur

Shaded area: no flutter possible

Q = (P: 'P)

lope=v

I 11
32-0 g, =0

Note: straight lines g;- 0 have

slope v; v and p are defined

Fig. 3,7 Existence of flutter

163



164

flutter may occur
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Fig. 3.8 Existence of flutter for A = 0
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Fig. 3.9 Existence of divergence
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Fig. 3.10 Possibilities of flutter and divergence
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Fig. 4.1 Two-degree-of-freedom model
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Fig. 4.8 Two-degree-of-freedom model
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Fig., 4.10 Types of divergent motion
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Fig. 4.15 Critical load versus ratio of damping coefficients for a = 0.6
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Fig. 4.19 Geometry of cantilevered pipe
conveying fluid

190



A,/‘IT4 (Jnd Az/ﬂ's

o
(@]
\
|
|
(o)
g
!
i
<
(¢
[
[\
o

10.0 — ]

2001 T : S e
B=10
y=0.0

50— $=1.0 | _A/z/ﬂs.ﬂ
%146

ANYZ

o
o
!

5.0

iooL . 1

Fig. 4.20 Typical plot of frequency equation




192

2.0

"
o
o

Y

20 40 60 80 100

B/s

Fig. 4.21 Critical flutter parameter vs. the ratio
of Coriolis force to internal damping force:
zero external damping



20— ] ==
% /
=100 /
y=10
| y=0.0
1.5/
u|%
1
kv
1.0
0.5
0 25 5.0 75 10.0

B/ 38

Fig. 4.22 (Critical flutter parameter vs. the ratio of Coriolis
force to internal damping force: external damping
as indicated

193



25

% -

10 T
. ~
Approximate //’
Solution \( i
%
L7 R

5 ' 37
-~
/, //
DUV R N
o 0.2 0.4 0.6 0.8 1.O

A/-;,F—_

Fig. 4.23 Comparison between the exact solution and the two-term
Galerkin approximation: zero external and internal
damping

194






kz,e(c;l;l+4;2)
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Fig. 4.27 Translation of imaginary axis
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Fig. 6.2 A cantilever under a follower force
(the Beck problem)

201



\‘L Rigid Massless Plate

= Y
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Fig. 6.4 A cantilever under both a follower force
and & force directed along the undeformed
axis (a congservative system)
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Fig. 8.1 Reut's problem
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Fig. 8.2 Photograph of the model
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Fig. 8.3 Sequence of photographs depicting flutter
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Fig. 8.4 Buckled state: Divergence
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Fig. 8.6 Photograph of the calibrating system
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Fig. 8.8 Configuration to find K1 by dynamic method
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method
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Fig. 8.10 Configuration to find K

1

by static method
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Fig. 8.15 Demonstration Model A
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Fig. 8.16 Demonstration Model B




Fig. 8.17 Demonstration Model C
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(a)

Fig. 8.18 Demonstration Model D
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(b)

Fig. 8.18 Demonstration Model D
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(c)

(d)

Fig. 8.18 Demonstration Model D
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(a)

(b)

Fig. 8.20 Demonstration Model F
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(a)

(b)

Fig. 8.21 Demonstration Model G
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(c)

Fig. 8.21 Demonstration Model G
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Fig. 8.21 Demonstration Model G
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Fig. 8.22 Demonstration Model H
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